
ECEN 427: Lab 2

What’s a driver?

In Lab2, you must create drivers for:

1. Buttons

2. Switches (same as buttons)

3. Interrupt Controller

https://github.com/byu-cpe/ecen427_student/tree/main/userspace/drivers

Lab 2

https://github.com/byu-cpe/ecen427_student/tree/main/userspace/drivers

What is the User space I/O (UIO) driver in Linux?

• Provides generic user space access to a hardware device
• Allows drivers to be written
• Knows nothing about the hardware device, except its

physical base address and interrupt line

What API (functions) does it provide to user space?

• Read/Write device addresses (via mmap)
• Enable interrupt line on CPU (via write)
• Wait/Check for interrupt activation (via read/poll)

Review

• https://byu-cpe.github.io/ecen427/documentation/hardware/

Hardware System

https://byu-cpe.github.io/ecen427/documentation/hardware/

1. How do you read/write to the GPIO controller registers?

2. How do you use the GPIO controller registers to read the current value of the buttons?

GPIO

1. Open the appropriate device file (see system.h)  fd
2. Use mmap: char * ptr = mmap(…, fd, …)  ptr
3. Use pointer to access registers (keeping in mind rules of pointer arithmetic)

1. Read from the data register (base address 0)

uint8_t buttons = *ptr;

1. How do you enable the GPIO controller to generate an interrupt when a button is
pressed?

2. For how long will the GPIO controller generate an interrupt?

3. How do you acknowledge the interrupt?

4. Is an interrupt generated on press? On release? Or both?

GPIO

1. Set bit in global interrupt enable register
2. Set bit in per-channel interrupt enable register

It is a “level” interrupt, so it stays high until acknowledged

Write a ‘1’ to the status bit, which is toggle on write (TOW). This will cause it to flip from 1 to 0.

Both. Any change in any of the buttons will generate an interrupt. If
an interrupt is already active, it has no effect.

1. What is an interrupt controller?

2. How many interrupt lines does the user space interrupt controller watch?

3. Suppose you want the interrupt controller to generate an interrupt when an interrupt is
detected on input 1. What do you need to do to set this up?

Interrupt Controller

Aggregates multiple interrupt lines from different hardware devices,
and combines them into a single interrupt output

Aggregates 4 interrupt lines (FIT, Buttons GPIO, Switches GPIO, DMA)

1. Set bits in the MER
2. Enable bit 1 of IER (read IER, set bit 1, write back OR … write to SIE)
3. Using write() system call on the UIO device file for the intc.

1. For how long will the interrupt controller generate an interrupt?

2. What do you need to do to stop the interrupt controller from sending an interrupt?

3. If a button is pressed in our system (and assuming interrupts are enabled), what do you
need to do to handle it?

Interrupt Controller

Generate an interrupt forever, until it is acknowledged.

Acknowledge the interrupt:
- Write an appropriate bit to the IAR

Acknowledge the interrupt:
- Acknowledge the interrupt from the GPIO  buttons_ack_interrupt()
- Acknowledge the interrupt from the INTC  intc_ack_interrupt()
- Re-enable input to the CPU (via write syscall)  intc_enable_uio_interrupts()

	ECEN 427: Lab 2
	Lab 2
	Review
	Hardware System
	GPIO
	GPIO
	Interrupt Controller
	Interrupt Controller

