

References

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

» References are aliases; pointers store
addresses

 References must be initialized and
cannot be reseated

« Pointers can be null and reassigned

 References are safer and clearer for
parameters

» Pointers required for dynamic allocation
and ownership semantics

int x 10;

int& r = x;
int* p = &x;

r = 20;
*p = 30;

printf (“x: %47,
printf (“x: %47,

// reference
// pointer

// modifies x

// modifies x

r); // print using ref
*p); // print using pointer

Reference Members in Classes

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

» Reference members must be
initialized
* |nitialization must occur in
constructor initializer list

 References cannot be reseated

class Foo {
inté& ref;

public:
Foo (inté& x)
}s

int main() {

int a = 10;

Foo f(a);

: ref(x) {}

// ref aliases a

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Standard Template Library
* Provides various data structures
« Template: They provide the template, you provide the type (T)

« list of integers
* map of int -> string

 std::vector<T>: This is a contiguous array
e Fast random access, fast iteration, fast insertion at the end
* Slow insertion/deletion in the middle

::list<T>: Linked list
 No random access
» Fast insertion/deletion anywhere
« std::map<T1,T2>: Key-Value mapping, like a dictionary
« Fast to add and delete entries, and to lookup a value by a key

[]
)}
~—
Q.

BYU Electrical & Computer

Range-Based Loop Example Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

New Method

std: :vector<int> v = {1, 2, 3};

for (int x : v) {

std: :cout << x << std::endl;

}

You can also use auto...

for (auto x : v) {
std: :cout << x << std::endl;
}

OLD Method

for (std::vector<int>::iterator it = v.begin();
it '= v.end();
++it)

std: :cout << *it << std::endl;

BYU Electrical & Computer

Iterating Through map (Example) Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

std: :map<std::string, int> m;

for (const auto& [k, v] : m) {
std: :cout <K k <K ": " KK v << std::endl;

}

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

Erasing From a List Engineering

How to look through this vector/list and erase items?
, . std: :vector<Foo*> v;
Can’t do this:

for (auto p : v) {
if (p->isDead()) {
delete p;
v.erase(...); // iterator invalidation - undefined behavior

}
You’ll need to use iterators, and do so carefully

for (auto it = v.begin(); it != v.end();) {
if ((*it)->isDead()) {

delete *it; // 1if vector owns the objects

it = v.erase(it); // shifts elements, returns next iterator
} else {

++it;

}

BYU Electrical & Computer

Base Constructor and Function Call Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

class Base { * The provided headers use inheritance

public:
Base(int x) {}
void f() {} « GameObject class
}s - Move, erase, draw, Kill

« Alien, Bullet, Bunker, BunkerBlock, Tank, UFO

class Derived : public Base {
public:

Derived() : Base(42) o
void g() { Base: :f();\ » Look at how the constructor initialized the base
¥ object in the initialization list

 Look at how code in a subclass calls the base
class method

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

How should we track global stuff? Engineering

« Games have lots of global state

* One approach:
» Organize global data into classes
» Enforce only one instance of the class

* There are many different approaches for managing global data. This is just one

Globals.h

Meyer’s Singleton

globals.h

class Globals {
public:

static Graphicsé& getGraphics ()
static Graphics g;
return g;

Function-local static

Initialized on first use
Thread-safe since C++11
Avoids static initialization order issues

{

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Static class member

globals.h

class Globals {
public:

static Graphicsé& getGraphics () {
return graphics;

}

private:

static Graphics graphics;

s

globals.cpp

Graphics Globals::graphics;

	C++ Refresher
	References
	Reference Members in Classes
	STL
	Range-Based Loop Example
	Iterating Through map (Example)
	Erasing From a List
	Base Constructor and Function Call
	How should we track global stuff?
	Globals.h

