
C++ Refresher
ECEN 427

Jeff Goeders

• References are aliases; pointers store
addresses

• References must be initialized and
cannot be reseated

• Pointers can be null and reassigned
• References are safer and clearer for

parameters
• Pointers required for dynamic allocation

and ownership semantics

References

int x = 10;

int& r = x; // reference
int* p = &x; // pointer

r = 20; // modifies x
*p = 30; // modifies x

printf(“x: %d”, r); // print using ref
printf(“x: %d”, *p); // print using pointer

Reference Members in Classes

• Reference members must be
initialized

• Initialization must occur in
constructor initializer list

• References cannot be reseated

class Foo {
int& ref;

public:
Foo(int& x) : ref(x) {}

};

int main() {
int a = 10;
Foo f(a); // ref aliases a

}

• Standard Template Library
• Provides various data structures
• Template: They provide the template, you provide the type (T)

• list of integers
• map of int -> string

• std::vector<T>: This is a contiguous array
• Fast random access, fast iteration, fast insertion at the end
• Slow insertion/deletion in the middle

• std::list<T>: Linked list
• No random access
• Fast insertion/deletion anywhere

• std::map<T1,T2>: Key-Value mapping, like a dictionary
• Fast to add and delete entries, and to lookup a value by a key

STL

Range-Based Loop Example

std::vector<int> v = {1, 2, 3};

for (int x : v) {
std::cout << x << std::endl;

}

for (std::vector<int>::iterator it = v.begin();
 it != v.end();
 ++it)
{
 std::cout << *it << std::endl;
}

for (auto x : v) {
 std::cout << x << std::endl;
}

OLD MethodNew Method

You can also use auto…

Iterating Through map (Example)

std::map<std::string, int> m;

for (const auto& [k, v] : m) {
std::cout << k << ": " << v << std::endl;

}

Erasing From a List

Can’t do this:
for (auto p : v) {
 if (p->isDead()) {
 delete p;
 v.erase(...); // iterator invalidation → undefined behavior
 }
}

for (auto it = v.begin(); it != v.end();) {
 if ((*it)->isDead()) {
 delete *it; // if vector owns the objects
 it = v.erase(it); // shifts elements, returns next iterator
 } else {
 ++it;
 }
}

You’ll need to use iterators, and do so carefully

std::vector<Foo*> v;
How to look through this vector/list and erase items?

• The provided headers use inheritance

• GameObject class
• Move, erase, draw, kill
• Alien, Bullet, Bunker, BunkerBlock, Tank, UFO

• Look at how the constructor initialized the base
object in the initialization list

• Look at how code in a subclass calls the base
class method

Base Constructor and Function Call

class Base {
public:

Base(int x) {}
void f() {}

};

class Derived : public Base {
public:

Derived() : Base(42) {}
void g() { Base::f(); }

};

• Games have lots of global state

• One approach:
• Organize global data into classes
• Enforce only one instance of the class

• There are many different approaches for managing global data. This is just one

How should we track global stuff?

Globals.h

class Globals {
public:

static Graphics& getGraphics() {
static Graphics g;
return g;

}

}

class Globals {
public:
 static Graphics& getGraphics() {
 return graphics;
 }

private:
 static Graphics graphics;
};

globals.h globals.h

globals.cpp
Graphics Globals::graphics;Function-local static

• Initialized on first use
• Thread-safe since C++11
• Avoids static initialization order issues

Meyer’s Singleton Static class member

	C++ Refresher
	References
	Reference Members in Classes
	STL
	Range-Based Loop Example
	Iterating Through map (Example)
	Erasing From a List
	Base Constructor and Function Call
	How should we track global stuff?
	Globals.h

