

BYU Electrical & Computer

Linux System Calls Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Kernel Code

Userspace System Call Handler
int main() {

int fd = open(“file.txt”) File Open Function

read(fd, ...)

File Read Function

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

At the end of last class we looked at the list of syscalls:
e https://chromium.googlesource.com/chromiumos/docs/+/HEAD/constants/syscalls.md

Where are the system calls to talk to hardware devices?
« UART
» Disk

Video card

Physical memory

USB devices

https://chromium.googlesource.com/chromiumos/docs/+/HEAD/constants/syscalls.md

BYU Electrical & Computer

Calling FunCtion in Drivers IEPEE—':}S‘SI:L?)EEGEOFENGINEERING

Userspace

int main() {

uart get input() ???

Don’t our device drivers
provide functions that we
can call to access the
devices?

BYU Electrical & Computer

Device Files Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

 Look like ordinary files in the filesystem, but are special files

* They are interfaces to the driver that controls the device

* By using system calls that operate on files, our code can
interface with the driver.

* They are not real files...

Have you used a device file before?

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Pseudo-devices |edit]

Device nodes on Unix-like systems do not necessarily have to correspond to physical devices. Nodes that lack this correspondence form the group of
pseudo-devices. They provide various functions handled by the operating system. Some of the most commonly used (character-based) pseudo-devices
include:

e /dev/null — accepts and discards all input written to it; provides an end-of-file indication when read from.

e /dev/zero — accepts and discards all input written to it; produces a continuous stream of null characters (zero-value bytes) as output when read
from.

e /dev/full — produces a continuous stream of null characters (zero-value bytes) as output when read from, and generates an ENOSPC ("disk full")
error when attempting to write to it.

e /dev/random — produces bytes generated by the kernel's cryptographically secure pseudorandom number generator. Its exact behavior varies by
implementation, and sometimes variants such as /dev/urandom or /dev/arandom are also provided.

e /dev/stdin, /dev/stdout, /dev/stderr — access the process's standard streams.

e /dev/fd/n — accesses the process's file descriptor n.

Additionally, BSD-specific pseudo-devices with an ioctl interface may also include:

e /dev/pf — allows userland processes to control PF through an ioctl interface.

e /dev/bio — provides ioctl access to devices otherwise not found as /dev nodes, used by bioctl to implement RAID management in OpenBSD
and NetBSD.

e /dev/sysmon — used by NetBSD's envsys framework for hardware monitoring, accessed in the userland through proplib(3) by the envstat

utility.[]

BYU Electrical & Computer

Linux System Calls Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Kernel Code

Userspace
int main() {

System Call Handler

UART Driver

int fd = open(“/dev/ttyUsSB1” File Open Function UART Open

read(fd, ...)

File Read Function UART Read Function

BYU Electrical & Computer

ECEN427 PYNQ Hardware System Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

* https://byu-cpe.qithub.io/ecen427/documentation/hardware/

https://byu-cpe.github.io/ecen427/documentation/hardware/

Linux System Calls

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Do we really need a separate driver for
every hardware device?

Can we make a generic driver?

Userspace
int main() {

int fp = open(“/dev/...”)

222?? col)

..... e o .,

Kernel Code

System Call Handler

Generic Driver

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

What kinds of things do you need
to do with a hardaware device you
know nothing about?

Linux System Calls

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Kernel Code

Userspace

int main() {

System Call Handler

Userspace 1/0 (UIO)

¢

int fd = open(“/dev/...”)

222?? , o)

What system calls would you use to talk to
this driver?

Read/Write Registers t ‘ Interrupt

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Before learning more, let's pause and
cover a few more operating system
concepts...

BYU Electrical & Computer

Engineerin g
IRA A. FULTON COLLEGE OF ENGINEERING

mmap ()

Map files (or devices) into memory

BYU Electrical & Computer

Process States IEP?EEL?S:L?EEGE OF ENGINEERING

 Last lecture we talked briefly about processes,
and how the operating system virtualizes the

CPU in order to run multiple processes.
| N HHpie P Descheduled
> S > | Ready
: : : cheduled
« The OS scheduler is responsible for selecting -
which process will run in the next time slice.
/O: initim‘ /O: done

« Sometimes processes “block” and need to wait
. Blocked
for an OS operation to complete.
« Example: process calls read() to get data from
a file on disk. This can take several milliseconds. Figure 4.2: Process: State Transitions

« Rather than blocking all execution, the process
goes to sleep, and the OS can wake it back up
when the data is ready.

BYU Electrical & Computer

Userspace I/0 Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

- Read/Write addresses (registers):

* mmap()
 Access registers via pointer returned from mmap

 Enable interrupts:
write() a1
* You must write 4 bytes

* Wait for interrupt:
* read()
* You must read 4 bytes

BYU Electrical & Computer

ECEN427 PYNQ Software System Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

* https://byu-cpe.qgithub.io/ecen427/documentation/software-stack/

https://byu-cpe.github.io/ecen427/documentation/software-stack/

BYU Electrical & Computer

Userspace I/o Drivers IEPEE—':}I?S:L‘QEEGEOFENGINEERING

« The UIO linux driver is not meant to actually serve as the device driver
* |t provides an interface that allows you to write drivers in userspace.

 In lab 2, you will create userspace drivers for the buttons, switches and

interrupt controller
 These will interface with the UIO kernel driver to access the devices

« Example https://github.com/byu-
cpe/ecend4?27 student/blob/main/userspace/drivers/uio example/generic u

0 example.c

https://github.com/byu-cpe/ecen427_student/blob/main/userspace/drivers/uio_example/generic_uio_example.c
https://github.com/byu-cpe/ecen427_student/blob/main/userspace/drivers/uio_example/generic_uio_example.c
https://github.com/byu-cpe/ecen427_student/blob/main/userspace/drivers/uio_example/generic_uio_example.c

	Devices
	Linux System Calls
	Slide Number 3
	Calling Function in Drivers
	Device Files
	Slide Number 6
	Linux System Calls
	ECEN427 PYNQ Hardware System
	Linux System Calls
	Slide Number 10
	Linux System Calls
	Slide Number 12
	Slide Number 13
	Process States
	Userspace I/O
	ECEN427 PYNQ Software System
	Userspace I/O Drivers

