
LDD3, Ch 6, 9, 10
ECEN 427



Ch 9: Communicating 
With Hardware



“As you might expect, you should not go off and start pounding on I/O ports (or memory) 
without first ensuring that you have exclusive access to those ports. The kernel provides a 
registration interface that allows your driver to claim the ports/memory it needs. The core 
function in that interface is request_region/request_mem_region”

#include <linux/ioport.h> 
struct resource *request_mem_region(unsigned long start, unsigned long 
len, char *name);

This isn’t strictly necessary, but it should be done to “play nice” with other drivers.

Allocating device memory



“Allocation of I/O memory is not the only required step before that memory may be 
accessed. You must also ensure that this I/O memory has been made accessible to the 
kernel. Getting at I/O memory is not just a matter of dereferencing a pointer; on many 
systems, I/O memory is not directly accessible in this way at all. So a mapping must be set 
up first.”

This is the role of the ioremap function.

ioremap



What is the difference between read/writing device registers and memory?

What issues could arise?

https://en.wikipedia.org/wiki/Memory_ordering

Memory vs Registers

https://en.wikipedia.org/wiki/Memory_ordering


“The main difference between I/O registers and RAM is that I/O operations have side 
effects, while memory operations have none: the only effect of a memory write is storing a 
value to a location, and a memory read returns the last value written there. 

Because memory access speed is so critical to CPU performance, the no-side-effects case 
has been optimized in several ways: values are cached and read/write instructions are 
reordered.”

“The compiler can cache data values into CPU registers without writing them to memory, 
and even if it stores them, both write and read operations can operate on cache memory 
without ever reaching physical RAM. Reordering can also happen both at the compiler level 
and at the hardware level: often a sequence of instructions can be executed more quickly if 
it is run in an order different from that which appears in the program text, for example, to 
prevent interlocks in the RISC pipeline. On CISC processors, operations that take a 
significant amount of time can be executed concurrently with other, quicker ones.”



“These optimizations are transparent and benign when applied to conventional memory (at 
least on uniprocessor systems), but they can be fatal to correct I/O operations, because 
they interfere with those “side effects” that are the main reason why a driver accesses I/O 
registers. The processor cannot anticipate a situation in which some other process (running 
on a separate processor, or something happening inside an I/O controller) depends on the 
order of memory access. The compiler or the CPU may just try to outsmart you and reorder 
the operations you request; the result can be strange errors that are very difficult to debug. 
Therefore, a driver must ensure that no caching is performed and no read or write 
reordering takes place when accessing registers.”

“The problem with hardware caching is the easiest to face: the underlying hardware is 
already configured (either automatically or by Linux initialization code) to disable any 
hardware cache when accessing I/O regions (whether they are memory or port regions).”



“The solution to compiler optimization and hardware reordering is to place a memory barrier 
between operations that must be visible to the hardware (or to another processor) in a 
particular order. Linux provides four macros to cover all possible ordering needs:”



Remember, though, that the addresses returned from ioremap should not be dereferenced 
directly; instead, accessor functions provided by the kernel should be used.

On some platforms, you may get away with using the return value from ioremap as a 
pointer. Such use is not portable, and, increasingly, the kernel developers have been 
working to eliminate any such use. The proper way of getting at I/O memory is via a set of 
functions (defined via <asm/io.h>) provided for that purpose.

Reading/Writing Device Memory



Ch 10: Interrupt 
Handling



“Although some devices can be controlled using nothing but their I/O regions, most real 
devices are a bit more complicated than that. Devices have to deal with the external world, 
which often includes things such as spinning disks, moving tape, wires to distant places, 
and so on. Much has to be done in a time frame that is different from, and far slower than, 
that of the processor. Since it is almost always undesirable to have the processor wait on 
external events, there must be a way for a device to let the processor know when 
something has happened. “

“That way, of course, is interrupts. An interrupt is simply a signal that the hardware can send 
when it wants the processor’s attention. Linux handles interrupts in much the same way that 
it handles signals in user space. For the most part, a driver need only register a handler for 
its device’s interrupts, and handle them properly when they arrive. Of course, underneath 
that simple picture there is some complexity; in particular, interrupt handlers are somewhat 
limited in the actions they can perform as a result of how they are run.”



• Register an interrupt handler



• The correct place to call request_irq is when the device is first opened, before the 
hardware is instructed to generate interrupts. The place to call free_irq is the last time the 
device is closed, after the hardware is told not to interrupt the processor any more.



The /proc Interface



• The interrupt number (int irq) is useful as information you may print in your log messages, if 
any.

• The second argument, void *dev_id, is a sort of client data; a void * argument is passed to 
request_irq, and this same pointer is then passed back as an argument to the handler when 
the interrupt happens. You usually pass a pointer to your device data structure in dev_id, so a 
driver that manages several instances of the same device doesn’t need any extra code in the 
interrupt handler to find out which device is in charge of the current interrupt event.

• The last argument, struct pt_regs *regs, is rarely used. It holds a snapshot of the processor’s 
context before the processor entered interrupt code. The registers can be used for monitoring 
and debugging; they are not normally needed for regular device driver tasks.

• Interrupt handlers should return a value indicating whether there was actually an interrupt to 
handle. If the handler found that its device did, indeed, need attention, it should return 
IRQ_HANDLED

ISR Arguments



Ch 6 IOCTL





• Most drivers need—in addition to the ability to read and write the device—the ability to 
perform various types of hardware control via the device driver. 

• Most devices can perform operations beyond simple data transfers; user space must 
often be able to request, for example, that the device lock its door, eject its media, report 
error information, change a baud rate, or self destruct. 

• These operations are usually supported via the ioctl method, which implements the 
system call by the same name.

Why ioctl?



• In user space, the ioctl system call has the following prototype: 

int ioctl(int fd, unsigned long cmd, ...);

“The dots in the prototype represent not a variable number of arguments but a single 
optional argument, traditionally identified as char *argp. The dots are simply there to prevent 
type checking during compilation. The actual nature of the third argument depends on the 
specific control command being issued (the second argument). Some commands take no 
arguments, some take an integer value, and some take a pointer to other data. Using a 
pointer is the way to pass arbitrary data to the ioctl call; the device is then able to exchange 
any amount of data with user space

ioctl System Call



• “The unstructured nature of the ioctl call has caused it to fall out of favor among kernel 
developers. Each ioctl command is, essentially, a separate, usually undocumented 
system call,”

There is no way to audit these calls in any sort of comprehensive manner. It is also difficult 
to make the unstructured ioctl arguments work identically on all systems; for example, 
consider 64-bit systems with a userspace process running in 32-bit mode. As a result, there 
is strong pressure to implement miscellaneous control operations by just about any other 
means. Possible alternatives include embedding commands into the data stream or using 
virtual filesystems, either sysfs or driverspecific filesystems. However, the fact remains that 
ioctl is often the easiest and most straightforward choice for true device operations.

Issues with ioctl…



• The ioctl driver method has a prototype that differs somewhat from the user-space 
version: 

int (*ioctl) (struct inode *inode, struct file *filp, unsigned int cmd, 
unsigned long arg); 

• The inode and filp pointers are the values corresponding to the file descriptor fd passed 
on by the application and are the same parameters passed to the open method. 

• The cmd argument is passed from the user unchanged, 
• The optional arg argument is passed in the form of an unsigned long, regardless of 

whether it was given by the user as an integer or a pointer. If the invoking program 
doesn’t pass a third argument, the arg value received by the driver operation is undefined. 



“As you might imagine, most ioctl implementations consist of a big switch statement that 
selects the correct behavior according to the cmd argument. Different commands have 
different numeric values, which are usually given symbolic names to simplify coding. The 
symbolic name is assigned by a preprocessor definition.”

“Before writing the code for ioctl, you need to choose the numbers that correspond to 
commands. The first instinct of many programmers is to choose a set of small numbers 
starting with 0 or 1 and going up from there. There are, however, good reasons for not doing 
things that way. The ioctl command numbers should be unique across the system in order 
to prevent errors caused by issuing the right command to the wrong device.”

ioctl Command Numbers





The approved way to define ioctl command numbers uses four bitfields, which have the 
following meanings.





“When a pointer is used to refer to user space, we must ensure that the user address is 
valid.”

In Chapter 3, we looked at the copy_from_user and copy_to_user functions, which can be 
used to safely move data to and from user space. Those functions can be used in ioctl
methods as well, but ioctl calls often involve small data items that can be more efficiently 
manipulated through other means. To start, address verification (without transferring data) is 
implemented by the function access_ok, which is declared in <asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);

ioctl and pointers

These macros write/read the datum to/from user space; they are relatively fast and 
should be called instead of copy_to_user/copy_from_user whenever single values 
are being transferred.


	LDD3, Ch 6, 9, 10
	Ch 9: Communicating With Hardware
	Allocating device memory
	ioremap
	Memory vs Registers
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Reading/Writing Device Memory
	Ch 10: Interrupt Handling
	Slide Number 11
	Slide Number 12
	Slide Number 13
	The /proc Interface
	ISR Arguments
	Ch 6 IOCTL
	Slide Number 17
	Why ioctl?
	ioctl System Call
	Issues with ioctl…
	Slide Number 21
	ioctl Command Numbers
	Slide Number 23
	Slide Number 24
	Slide Number 25
	ioctl and pointers

