

Ch 4 Debugging

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

There are eight possible loglevel strings, defined in the header <linux/kernel.h>; we
list them in order ot decreasing severity:

KERN EMERG
Used for emergency messages, usually those that precede a crash.

* One of the differences is that printk lets
you classify messages according to

their severity by associating different KERN ALERT
|Og|eve|S, or priorities’ W|th the A situation requiring immediate action.
messages. You usually indicate the KERN_CRIT

Critical conditions, often related to serious hardware or software failures.

loglevel with a macro. KERN_ERR

Used to report error conditions; device drivers often use KERN ERR to report hard-
ware difficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN NOTICE
Situations that are normal, but still worthy of note. A number of security-related
conditions are reported at this level.

KERN INFO
Informational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

printk(KERN DEBUG "Here I am: %s:%i\n", FILE , LINE);
printk (KERN CRIT "I'm trashed; giving up on ¥p\n", ptr);

BYU Electrical & Computer

Kernel LOg’ Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

» The printk function writes messages into a circular buffer thatis _ LOG_BUF_LEN bytes
long: a value from 4 KB to 1 MB chosen while configuring the kernel.

 The dmesg command can be used to look at the content of the buffer without flushing it;
actually, the command returns to stdout the whole content of the buffer, whether or not it
has already been read.

« If the circular buffer fills up, printk wraps around and starts adding new data to the
beginning of the buffer, overwriting the oldest data

BYU Electrical & Computer

Kernel or No Kernel? Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

* How to globally disable printing in your kernel module?

#undef PDEBUG /* undef it, just in case */
#ifdef SCULL DEBUG
ifdef KERNEL
/* This one if debugging is on, and kernel space */
define PDEBUG(fmt, args...) printk(KERN DEBUG "scull: " fmt, ## args)
else
/* This one for user space */
define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
endif
felse
define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#define PDEBUGG(fmt, args...) /* nothing: it's a placeholder */

BYU Electrical & Computer

Malkefile changes Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Comment/uncomment the following line to disable/enable debugging
DEBUG = y

Add your debugging flag (or not) to CFLAGS

ifeq ($(DEBUG),y)

DEBFLAGS = -0 -g -DSCULL DEBUG # "-0" is needed to expand inlines
else

DEBFLAGS = -02
endif

CFLAGS += $(DEBFLAGS)

BYU Electrical & Computer

Rate Limiting IE?;!\gEEIﬁSJLgEEGE OF ENGINEERING

 “If you are not careful, you can find yourself generating thousands of messages with
printk, overwhelming the console and, possibly, overflowing the system log file.”

* “When using a slow console device (e.g., a serial port), an excessive message rate can
also slow down the system or just make it unresponsive.

« What should you do?

* In many cases, the best behavior is to set a flag saying, “| have already complained about this,’
and not print any further messages once the flag gets set

)

* In others, though, there are reasons to emit an occasional “the device is still broken” notice.
The kernel has provided a function that can be helpful in such cases:

int printk ratelimit(veid);

 This function should be called before you consider printing a message that could be repeated

often if (printk ratelimit())
printk(KERN NOTICE "The printer is still on fire\n");

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Don’t call printk directly!

https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-
kernel-messaqges

If you have a struct device*
 dev_err(), dev _warn(), dev_info(), and so forth
* https://elixir.bootlin.com/linux/v5.4/source/include/linux/device.h#L 1740

Otherwise, use:
 pr_notice(), pr_info(), pr_warn(), pr_err(), etc.
 https://elixir.bootlin.com/linux/v5.4/source/include/linux/printk.h#L.303

These functions provide nicer formatting and more context information in the
dmesg log.

https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-kernel-messages
https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-kernel-messages
https://elixir.bootlin.com/linux/v5.4/source/include/linux/device.h#L1740
https://elixir.bootlin.com/linux/v5.4/source/include/linux/printk.h#L303

BYU Electrical & Computer

Oops Messages Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

« “Most bugs show themselves in NULL pointer dereferences or by the use of other
incorrect pointer values. The usual outcome of such bugs is an oops message.”

Unable to handle kernel NULL pointer dereference at virtual address 00000000

printing eip:

d083a064

Oops: 0002 [#1]

SMP

CPU: 0

EIP: 0060: [<d083a064>] Not tainted

EFLAGS: 00010246 (2.6.6)

EIP 1s at faulty write+ox4/0x10 [faulty]

eax: 00000000 ebx: ODOOOOOO ecx: OO0OOOOOO edx: 000O00DOO

esi: cf8b2460 edi: cf8b2480 ebp: 00000005 esp: c31c5f74

ds: 007b es: 007b ss: OO0GB

Process bash (pid: 2086, threadinfo=c31c4000 task=cfaoaéco)

Stack: co150558 cf8b2460 080e9408 00000005 cf8b2480 DooOOODO cfBb2460 ctBb2460
tHHff{7 08029408 c31c4000 c0150682 cfBb2460 08029408 00000005 cf8b2480
00000000 00000001 00000005 cO103T8f 00000001 08089408 00000005 00000005

Call Trace:

[<c0150558>] wfs write+Oxb8/0x130
[<C0150682>] sys write+0x42/0x70
[<c0103f8f>] syscall call+ox7/oxb

Code: 89 15 00 00 00 00 c3 90 Bd 74 26 00 83 ec Oc b8 00 aé B3 dO

Ch 11: Data Types

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer

Data T'Ypes Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

- Data types used by kernel data are divided into three main classes:

1. standard C types such as int,
2. explicitly sized types such as u32, and
3. types used for specific kernel objects, such as pid t.

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

Explicit Size Types Engineering

« Sometimes kernel code requires data items of a specific size, perhaps to
match predefined binary structures,* to communicate with user space, or
to align data within structures by inserting “padding” fields

* The kernel offers the following data types to use whenever you need to
know the size of your data. All the types are declared in <asm/types.h>,
which, in turn, is included by <linux/types.h>:

ug; /* unsigned byte (8 bits) */
ui6; /* unsigned word (16 bits) */
ui2; /* unsigned 32-bit value */
ubd4; /* unsigned 64-bit value */

BYU Electrical & Computer

Physical Memory Addresses Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Although you must be careful when mixing different data types, sometimes there are good
reasons to do so. One such situation is for memory addresses, which are special as far as
the kernel is concerned.

Although, conceptually, addresses are pointers, memory administration is often better
accomplished by using an unsigned integer type; the kernel treats physical memory like a
huge array, and a memory address is just an index into the array.

Furthermore, a pointer is easily dereferenced; when dealing directly with memory
addresses, you almost never want to dereference them in this manner. Using an integer
type prevents this dereferencing, thus avoiding bugs.

Therefore, generic memory addresses in the kernel are usually unsigned long, exploiting
the fact that pointers and long integers are always the same size, at least on all the
platforms currently supported by Linux.

BYU Electrical & Computer

Interface Specific types Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

« Some of the commonly used data types in the kernel have their own typedef statements,
thus preventing any portability problems. For example, a process identifier (pid) is usually
pid_t instead of int.

* Note that, in recent times, relatively few new interface-specific types have been defined.
Use of the typedef statement has gone out of favor among many kernel developers, who
would rather see the real type information used directly in the code, rather than hidden
behind a user-defined type. Many older interface-specific types remain in the kernel,
however, and they will not be going away anytime soon.

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

Printing Interface Specific Types Engineering

* The main problem with _t data items is that when you need to print them, it's not always
easy to choose the right printk or printf format, and warnings you resolve on one
architecture reappear on another.

» For example, how would you print a size t, that is unsigned long on some platforms and
unsigned int on some others?

 Whenever you need to print some interface-specific data, the best way to do it is by
casting the value to the biggest possible type (usually long or unsigned long) and then
printing it through the corresponding format.

BYU Electrical & Computer

POinter Return T.Ypes ErgiggggigﬁEGEOFENGINEERING

« Many internal kernel functions return a pointer value to the caller. Many of those functions
can also fail. In most cases, failure is indicated by returning a NULL pointer value. This
technique works, but it is unable to communicate the exact nature of the problem. Some
interfaces really need to return an actual error code so that the caller can make the right
decision based on what actually went wrong.

* A number of kernel interfaces (but not all) return this information by encoding the error
code in a pointer value.

« Such functions must be used with care, since their return value cannot simply be
compared against NULL. To help in n the creation and use of this sort of interface, a small
set of functions has been made available (in <linux/err.n>).

» The caller can use IS_ERR to test whether a returned pointer is an error code or not:
« long IS ERR(const void *ptr);

* If you need the actual error code, it can be extracted with:
« long PTR_ERR(const void *ptr);

	LDD3, Ch 4 & 11
	Ch 4 Debugging
	printk
	Kernel Log
	Kernel or No Kernel?
	Makefile changes
	Rate Limiting
	pr_*, dev_*
	Oops Messages
	Ch 11: Data Types
	Data Types
	Explicit Size Types
	Physical Memory Addresses
	Interface Specific types
	Printing Interface Specific Types
	Pointer Return Types

