
LDD3, Ch 4 & 11
ECEN 427



Ch 4 Debugging



• One of the differences is that printk lets 
you classify messages according to 
their severity by associating different 
loglevels, or priorities, with the 
messages. You usually indicate the 
loglevel with a macro.

printk



• The printk function writes messages into a circular buffer that is __LOG_BUF_LEN bytes 
long: a value from 4 KB to 1 MB chosen while configuring the kernel.

• The dmesg command can be used to look at the content of the buffer without flushing it; 
actually, the command returns to stdout the whole content of the buffer, whether or not it 
has already been read.

• If the circular buffer fills up, printk wraps around and starts adding new data to the 
beginning of the buffer, overwriting the oldest data

Kernel Log



• How to globally disable printing in your kernel module?

Kernel or No Kernel?



Makefile changes



• “If you are not careful, you can find yourself generating thousands of messages with 
printk, overwhelming the console and, possibly, overflowing the system log file.”

• “When using a slow console device (e.g., a serial port), an excessive message rate can 
also slow down the system or just make it unresponsive.

• What should you do?
• In many cases, the best behavior is to set a flag saying, “I have already complained about this,” 

and not print any further messages once the flag gets set

• In others, though, there are reasons to emit an occasional “the device is still broken” notice. 
The kernel has provided a function that can be helpful in such cases:

• This function should be called before you consider printing a message that could be repeated 
often

Rate Limiting



Don’t call printk directly!
https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-
kernel-messages

If you have a struct device*
• dev_err(), dev_warn(), dev_info(), and so forth
• https://elixir.bootlin.com/linux/v5.4/source/include/linux/device.h#L1740

Otherwise, use:
• pr_notice(), pr_info(), pr_warn(), pr_err(), etc.
• https://elixir.bootlin.com/linux/v5.4/source/include/linux/printk.h#L303

These functions provide nicer formatting and more context information in the 
dmesg log.

pr_*, dev_*

https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-kernel-messages
https://www.kernel.org/doc/html/latest/process/coding-style.html#printing-kernel-messages
https://elixir.bootlin.com/linux/v5.4/source/include/linux/device.h#L1740
https://elixir.bootlin.com/linux/v5.4/source/include/linux/printk.h#L303


• “Most bugs show themselves in NULL pointer dereferences or by the use of other 
incorrect pointer values. The usual outcome of such bugs is an oops message.”

Oops Messages



Ch 11: Data Types



• Data types used by kernel data are divided into three main classes: 

1. standard C types such as int, 
2. explicitly sized types such as u32, and 
3. types used for specific kernel objects, such as pid_t.

Data Types



• Sometimes kernel code requires data items of a specific size, perhaps to 
match predefined binary structures,* to communicate with user space, or 
to align data within structures by inserting “padding” fields

• The kernel offers the following data types to use whenever you need to 
know the size of your data. All the types are declared in <asm/types.h>, 
which, in turn, is included by <linux/types.h>:

Explicit Size Types



Although you must be careful when mixing different data types, sometimes there are good 
reasons to do so. One such situation is for memory addresses, which are special as far as 
the kernel is concerned. 

Although, conceptually, addresses are pointers, memory administration is often better 
accomplished by using an unsigned integer type; the kernel treats physical memory like a 
huge array, and a memory address is just an index into the array. 

Furthermore, a pointer is easily dereferenced; when dealing directly with memory 
addresses, you almost never want to dereference them in this manner. Using an integer 
type prevents this dereferencing, thus avoiding bugs. 

Therefore, generic memory addresses in the kernel are usually unsigned long, exploiting 
the fact that pointers and long integers are always the same size, at least on all the 
platforms currently supported by Linux.

Physical Memory Addresses



• Some of the commonly used data types in the kernel have their own typedef statements, 
thus preventing any portability problems. For example, a process identifier (pid) is usually 
pid_t instead of int.

• Note that, in recent times, relatively few new interface-specific types have been defined. 
Use of the typedef statement has gone out of favor among many kernel developers, who 
would rather see the real type information used directly in the code, rather than hidden 
behind a user-defined type. Many older interface-specific types remain in the kernel, 
however, and they will not be going away anytime soon.

Interface Specific types



• The main problem with _t data items is that when you need to print them, it’s not always 
easy to choose the right printk or printf format, and warnings you resolve on one 
architecture reappear on another. 

• For example, how would you print a size_t, that is unsigned long on some platforms and 
unsigned int on some others?

• Whenever you need to print some interface-specific data, the best way to do it is by 
casting the value to the biggest possible type (usually long or unsigned long) and then 
printing it through the corresponding format. 

Printing Interface Specific Types



• Many internal kernel functions return a pointer value to the caller. Many of those functions 
can also fail. In most cases, failure is indicated by returning a NULL pointer value. This 
technique works, but it is unable to communicate the exact nature of the problem. Some 
interfaces really need to return an actual error code so that the caller can make the right 
decision based on what actually went wrong.

• A number of kernel interfaces (but not all) return this information by encoding the error 
code in a pointer value. 

• Such functions must be used with care, since their return value cannot simply be 
compared against NULL. To help in the creation and use of this sort of interface, a small 
set of functions has been made available (in <linux/err.h>).

• The caller can use IS_ERR to test whether a returned pointer is an error code or not: 
• long IS_ERR(const void *ptr); 

• If you need the actual error code, it can be extracted with: 
• long PTR_ERR(const void *ptr);

Pointer Return Types


	LDD3, Ch 4 & 11
	Ch 4 Debugging
	printk
	Kernel Log
	Kernel or No Kernel?
	Makefile changes
	Rate Limiting
	pr_*, dev_*
	Oops Messages
	Ch 11: Data Types
	Data Types
	Explicit Size Types
	Physical Memory Addresses
	Interface Specific types
	Printing Interface Specific Types
	Pointer Return Types

