

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

* The goal of this chapter is to write a complete char device driver.

« We develop a character driver because this class is suitable for most simple hardware
devices. Char drivers are also easier to understand than block drivers or network drivers
(which we get to in later chapters).

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

The textbook walks through the creation of a driver called scull.
» “scull is a char driver that acts on a memory area as though it were a device.”

The scull source implements the following devices:

scull0 to scull3
Four devices, each consisting of a memory area that is both global and persis-
tent. Global means that if the device is opened multiple times, the data con-
tained within the device is shared by all the file descriptors that opened it.
Persistent means that if the device is closed and reopened, data isn’t lost. This
device can be fun to work with, because it can be accessed and tested using con-
ventional commands, such as ¢p, cat, and shell I/O redirection.

scullpipe0 to scullpipe3

Four FIFO (first-in-first-out) devices, which act like pipes. One process reads
what another process writes. If multiple processes read the same device, they
contend for data. The internals of scullpipe will show how blocking and non-
blocking read and write can be implemented without having to resort to inter-
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important one
and is separate from interrupt handling (covered in Chapter 10).

scullsingle
scullpriv

Major and Minor Numbers

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

If you issue the Is - command, you'll see two numbers (separated by a comma) in
the device file entries before the date of the last moditication, where the file length

normally appears. These numbers are the major and minor device number for the
particular device. The following listing shows a few devices as they appear on a typi-
cal system. Their major numbers are 1, 4, 7, and 10, while the minors are 1, 3, 5, 64,

65, and 129.
CIW-TW-TW- 1 root
CIW------- 1 root
CIW------- 1 root
CIW-TW-TW- 1 root
CIW-TW---- 1 root
CIW--W---- 1 vcsa
CIW--W---- 1 vcsa
CIW-TW-TW- 1 root

Toot
Toot
root
tty
uucp
tty
tty
root

1,
10,
4,
4,
4,
[E
7,
1,

3 Apr

1 Apr

1 Oct
b4 Apr
b5 Apr
1 Apr
129 Apr
5 Apr

11
11
23
11
11
11
11
11

2002
2002
03:04
2002
2002
2002
2002
2002

null
psaux
ttyl
ttyso
tty51
vesl
vCsal
Zero

 Traditionally, the major number identifies the driver associated with the device.
« The minor number is used by the kernel to determine exactly which device is being referred to.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Within the kernel, the dev t type (defined in <linux/types.h>) is used to hold device
numbers—both the major and minor parts. As of Version 2.6.0 of the kernel, dev t is
a 32-bit quantity with 12 bits set aside for the major number and 20 for the minor
number. Your code should, of course, never make any assumptions about the inter-
nal organization of device numbers; it should, instead, make use of a set of macros
found in <linux/kdev_t.h>. To obtain the major or minor parts of a dev t, use:

MAJOR(dev_t dev);
MINOR(dev t dev);

If, instead, you have the major and minor numbers and need to turn them into a dev _t,
use:

MKDEV(int major, int minor);
e

Get major/minor
from dev_t

Create dev_t from

major/minor
numbers.

BYU Electrical & Computer

Allocating Device Numbers Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

int alloc chrdev region(dev t *dev, unsigned int firstminor,
unsigned int count, char *name);

« With this function, dev is an output-only parameter that will, on successful completion,
hold the first number in your allocated range.

« firstminor should be the requested first minor number to use; it is usually 0.
« count is the total number of contiguous device numbers you are requesting.

 Finally, name is the name of the device that should be associated with this number range;
it will appear in /proc/devices and sysfs.

Regardless of how you allocate your device numbers, you should free them when
they are no longer in use. Device numbers are freed with:

void unregister chrdev region(dev t first, unsigned int count);

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

User Space Kernel Space

Major #,

?7??]
Minor #

???

Device Files

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

The following script, scull_load, is part of the scull distribution. The user of a driver
that is distributed in the form of a module can invoke such a script from the sys-
tem’s rc.local file or call it manually whenever the module is needed.

* |n the textbook, the device file is

#!/bin/sh
module="scull"
device="scull"
mode="664"

created using a “scull_load” shell
script called from user space.

 Uses mknod

invoke insmod with all arguments we got
and use a pathname, as newer modutils don't look in . by default
/sbin/insmod ./$module.ko $* || exit 1

remove stale nodes
mm -f /dev/${device}[0-3]

* In lab4, we will trigger the device file
creation from within your driver

major=$(awk "\\$2==\"$module\" {print \\$1}" /proc/devices)

mknod /dev/${device}0 c $major 0
mknod /dev/${device}l c $major 1
mknod /dev/${device}2 c $major 2
mknod /dev/${device}3 c $major 3

give appropriate group/permissions, and change the group.

Not all distributions have staff, some have "wheel" instead.
group="staff"

grep -q '"“staff:' /etc/group || group="wheel"

chgrp $group /dev/${device}[0-3]

chmod $mode /dev/${device}[0-3]
The script can be adapted for another driver by redefining the variables and adjust-
ing the mknod lines. The script just shown creates four devices because four is the
default in the scull sources.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

User Space Kernel Space

/dev/audio Mz?jor #, ?2??
Minor # "

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Next we need to tell Linux about our device...

We will create a new “character device” in the kernel

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

User Space Kernel Space

_ Maijor #, Character
/dev/audio e Device

BYU Electrical & Computer

Char Device Registration Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

There are two ways of allocating and initializing one of these structures. If you wish
to obtain a standalone cdev structure at runtime, you may do so with code such as:

struct cdev *my cdev = cdev_alloc();
my cdev-»ops = &my fops;

Chances are, however, that you will want to embed the cdev structure within a

device-specific structure of your own; that is what scull does. In that case, you should
initialize the structure that you have already allocated with:

void cdev_init(struct cdev *cdev, struct file operations *fops);

https://elixir.bootlin.com/linux/v5.4/source/include/linux/cdev.h#L14

The only field you need to set yourself:

THIS_MODULE;

cdev.owner

https://elixir.bootlin.com/linux/v5.4/source/include/linux/cdev.h#L14

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Once the cdev structure is set up, the final step is to tell the kernel about it with a call to:

int cdev add(struct cdev *dev, dev t num, unsigned int count);

Here, dev is the cdev structure, num is the first device number to which this device
responds, and count is the number of device numbers that should be associated with
the device.

To remove a char device from the system, call:

void cdev del(struct cdev *dev);

Clearly, you should not access the cdev structure after passing it to cdev_del.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Internally, scull represents each device with a structure of type struct scull dev. This
structure is defined as:

struct scull dev {
struct scull gset *data; /* Pointer to first quantum set */

int quantum; /* the current quantum size */

int gset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */

};

» For lab4, we will do something similar, and have our own “struct” for each device in the
driver.

 (Our driver will only have 1 device) ©

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

File Operations Engineering

* The fops™ we provide to the character device contains a struct of pointers
to different functions in our driver for any file operations we want to
support.

« We can leave function pointers NULL for unsupported operations. “The
exact behavior of the kernel when a NULL pointer is specified is different
for each function”

https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#.1814

https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

struct module *owner
The first file operations field is not an operation at all; it is a pointer to the
module that “owns” the structure. This field is used to prevent the module from
being unloaded while its operations are in use. Almost all the time, it is simply
initialized to THIS MODULE, a macro defined in <linux/module.h>.

loff t (*llseek) (struct file *, loff t, int);
The llseek method is used to change the current read/write position in a file, and
the new position is returned as a (positive) return value. The loff t parameter is
a “long offset” and is at least 64 bits wide even on 32-bit platforms. Errors are
signaled by a negative return value. If this function pointer is NULL, seek calls will
modify the position counter in the file structure (described in the section “The
file Structure™) in potentially unpredictable ways.

ssize t (*read) (struct file *, char user *, size t, loff t *);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with -EINVAL (“Invalid argument”). A nonnegative return
value represents the number of bytes successfully read (the return value is a
“signed size” type, usually the native integer type for the target platform).

ssize t (*alo read)(struct kiocb *, char user *, size t, loff t);
[nitiates an asynchronous read—a read operation that might not complete

before the function returns. If this method is NULL, all operations will be pro-
cessed (synchronously) by read instead.

ssize t (*write) (struct file *, const char _ user *, size t, loff t *);

int

int

int

int

Sends data to the device. If NULL, -EINVAL is returned to the program calling the
write system call. The return value, if nonnegative, represents the number of
bytes successfully written.

(*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

The ioctl system call offers a way to issue device-specific commands (such as for-
matting a track of a floppy disk, which is neither reading nor writing). Addition-
ally, a few ioctl commands are recognized by the kernel without referring to the
fops table. If the device doesn’t provide an ioctl method, the system call returns
an error for any request that isn’t predefined (-ENOTTY, “No such ioctl for
device”).

(*mmap) (struct file *, struct vm area struct *);
mmap 1s used to request a mapping of device memory to a process’s address
space. If this method is NULL, the mmap system call returns -ENODEV.

(*open) (struct inode *, struct file *);

Though this is always the first operation performed on the device file, the driver
is not required to declare a corresponding method. If this entry is NULL, opening
the device always succeeds, but your driver isn’t notified.

(*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. Like open,
release can be NULL."

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

The scull device driver implements only the most important device methods. Its
file operations structure is initialized as follows:

struct file operations scull fops = {

.OWner = THIS MODULE,
.1lseek = scull llseek,
.Tead = scull read,
write = scull write,
.loctl = scull ioctl,
.open = scull open,
.Telease = scull release,

b

« Will this initialize the other function pointers to NULL?

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

User Space Kernel Space

Driver

Character
Device

/dev/audio Mz?Jor #,
Minor #

my_open(

my_read

—
S N

)

my_write(

BYU Electrical & Computer

struct file Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

struct file, defined in <linux/fs.h>, is the second most important data structure
used in device drivers. Note that a file has nothing to do with the FILE pointers of
user-space programs. A FILE is defined in the C library and never appears in kernel
code. A struct file, on the other hand, is a kernel structure that never appears in
user programs.

The file structure represents an open file. (It is not specific to device drivers; every
open file in the system has an associated struct file in kernel space.) It is created by
the kernel on open and is passed to any function that operates on the file, until
the last close. After all instances of the file are closed, the kernel releases the data
structure.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

mode t f mode;
The file mode identifies the file as either readable or writable (or both), by means
of the bits FMODE_READ and FMODE WRITE. You might want to check this field for
read/write permission in your open or ioctl function, but you don’t need to check
permissions for read and write, because the kernel checks before invoking your
method. An attempt to read or write when the file has not been opened for that
type of access is rejected without the driver even knowing about it.

loff t f pos;
The current reading or writing position. loff_t is a 64-bit value on all platforms
(Long long in gec terminology). The driver can read this value if it needs to know
the current position in the file but should not normally change it; read and write
should update a position using the pointer they receive as the last argument
instead of acting on filp->f pos directly. The one exception to this rule is in the
llseek method, the purpose of which is to change the file position.

void *private data;
The open system call sets this pointer to NULL before calling the open method for
the driver. You are free to make its own use of the field or to ignore it; you can
use the field to point to allocated data, but then you must remember to free that
memory in the release method before the file structure is destroyed by the ker-
nel. private data is a useful resource for preserving state information across sys-
tem calls and is used by most of our sample modules.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

int (*open)(struct inode *inode, struct file *filp);

The inode argument has the information we need in the form of its i cdev field,
which contains the cdev structure we set up before. The only problem is that we do
not normally want the cdev structure itself, we want the scull dev structure that con-
tains that cdev structure. The C language lets programmers play all sorts of tricks to
make that kind of conversion; programming such tricks is error prone, however, and
leads to code that is difficult for others to read and understand. Fortunately, in this
case, the kernel hackers have done the tricky stuft for us, in the form of the
container_of macro, defined in <linux/kernel.h>:

container of(pointer, container type, container field);

This macro takes a pointer to a field of type container field, within a structure of
type container type, and returns a pointer to the containing structure. In scull_open,
this macro is used to find the appropriate device structure:

struct scull dev *dev; /* device information */

dev = container of(inode->i cdev, struct scull dev, cdev);
filp-»private data = dev; /* for other methods */

BYU Electrical & Computer

open / release Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

int (*open)(struct inode *inode, struct file *filp);

int scull release(struct inode *inode, struct file *filp)

{
}

return 0;

“You may be wondering what happens when a device file is closed more times than it is
opened. How does a driver know when an open device file has really been closed?”

“The answer is simple: not every close system call causes the release method to be
invoked...The kernel keeps a counter of how many times a file structure is being used. The
close system call executes the release method only when the counter for the file structure
drops to 0”

BYU Electrical & Computer

read and write Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

The read and write methods both perform a similar task, that is, copying data from
and to application code. Therefore, their prototypes are pretty similar, and it’s worth
introducing them at the same time:

ssize t read(struct file *filp, char
size t count, loff t *offp);

ssize t write(struct file *filp, const char _ user *buff,
size t count, loff t *offp);

_user *buff,

For both methods, filp is the file pointer and count is the size of the requested data
transfer. The buff argument points to the user butfer holding the data to be written or
the empty bufter where the newly read data should be placed. Finally, offp is a pointer
to a “long offset type” object that indicates the file position the user is accessing. The
return value is a “signed size type”; its use is discussed later.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Let us repeat that the buff argument to the read and write methods is a user-space
pointer. Therefore, it cannot be directly dereferenced by kernel code. There are a few
reasons for this restriction:

* Depending on which architecture your driver is running on, and how the kernel
was configured, the user-space pointer may not be valid while running in kernel
mode at all. There may be no mapping for that address, or it could point to some
other, random data.

* Even if the pointer does mean the same thing in kernel space, user-space mem-
ory is paged, and the memory in question might not be resident in RAM when
the system call is made. Attempting to reference the user-space memory directly
could generate a page fault, which is something that kernel code is not allowed
to do. The result would be an “oops,” which would result in the death of the
process that made the system call.

* The pointer in question has been supplied by a user program, which could be
buggy or malicious. If your driver ever blindly dereferences a user-supplied
pointer, it provides an open doorway allowing a user-space program to access or
overwrite memory anywhere in the system. If you do not wish to be responsible
for compromising the security of your users’ systems, you cannot ever derefer-
ence a user-space pointer directly.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

unsigned long copy to user(void _ user *to,
const void *from,
unsigned long count);
unsigned long copy from user(void *to,
const void user *from,
unsigned long count);

“The role of the two functions is not limited to copying data to and from user-space: they also
check whether the user space pointer is valid. If the pointer is invalid, no copy is performed; if
an invalid address is encountered during the copy, on the other hand, only part of the data is
copied. In both cases, the return value is the amount of memory still to be copied. The scull
code looks for this error return, and returns-EFAULT to the user if it's not 0.”

Whatever the amount of data the methods transfer, they should generally update the file
position at *offp to represent the current file position after successful completion of the system
call. The kernel then propagates the file position change back into the file structure when
appropriate.

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

ssize t scull read(struct file *filp, char user *buf, size t count,

loff t *f pos)

{

struct scull dev *dev = filp-»private data;
struct scull gset *dptr; /* the first listitem */

int quantum = dev->quantum, gset = dev-»gset;

int itemsize = quantum * qset; /* how many bytes in the listitem */
int item, s pos, g pos, rest;

ssize t retval = 0;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

if (*f pos >= dev->size)
goto out;

if (*f_pos + count > dev-»>size)
count = dev->size - *f pos;

/* read only up to the end of this quantum */

/* find listitem, gset index, and offset in the quantum */ if (count > quantum - g _pos)
item = (long)*f pos / itemsize; count = quantum - g _pos;
rest = (long)*f pos % itemsize;
s pos = rest / quantum; g_pos = rest ¥ quantum; if (copy_to_user(buf, dptr->data[s_pos] + gq_pos, count)) {
retval = -EFAULT;
/* follow the list up to the right position (defined elsewhere) */ goto out;
dptr = scull follow(dev, item); }
*f pos += count;
if (dptr == NULL || !dptr-»>data || ! dptr-»data[s pos]) retval = count;

goto out; /* don't fill holes */
out:

up(&dev->sem);
return retval;

	LDD3, Ch 3
	Slide Number 2
	Scull
	Major and Minor Numbers
	dev_t
	Allocating Device Numbers
	Slide Number 7
	Device Files
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Char Device Registration
	Slide Number 13
	Slide Number 14
	File Operations
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	struct file
	Slide Number 21
	Slide Number 22
	open / release
	read and write
	Slide Number 25
	Slide Number 26
	Slide Number 27

