
LDD3, Ch 3
ECEN 427

• The goal of this chapter is to write a complete char device driver.

• We develop a character driver because this class is suitable for most simple hardware
devices. Char drivers are also easier to understand than block drivers or network drivers
(which we get to in later chapters).

The textbook walks through the creation of a driver called scull.
• “scull is a char driver that acts on a memory area as though it were a device.”

The scull source implements the following devices:

Scull

• Traditionally, the major number identifies the driver associated with the device.
• The minor number is used by the kernel to determine exactly which device is being referred to.

Major and Minor Numbers

dev_t

Get major/minor
from dev_t

Create dev_t from
major/minor

numbers.

• With this function, dev is an output-only parameter that will, on successful completion,
hold the first number in your allocated range.

• firstminor should be the requested first minor number to use; it is usually 0.
• count is the total number of contiguous device numbers you are requesting.
• Finally, name is the name of the device that should be associated with this number range;

it will appear in /proc/devices and sysfs.

Allocating Device Numbers

Kernel SpaceUser Space

Major #,
Minor #??? ???

• In the textbook, the device file is
created using a “scull_load” shell
script called from user space.

• Uses mknod

• In lab4, we will trigger the device file
creation from within your driver

Device Files

Kernel SpaceUser Space

Major #,
Minor # ???/dev/audio

Next we need to tell Linux about our device…

We will create a new “character device” in the kernel

Kernel SpaceUser Space

Major #,
Minor #

/dev/audio
Character

Device

Char Device Registration

https://elixir.bootlin.com/linux/v5.4/source/include/linux/cdev.h#L14

cdev.owner = THIS_MODULE;
The only field you need to set yourself:

https://elixir.bootlin.com/linux/v5.4/source/include/linux/cdev.h#L14

• For lab4, we will do something similar, and have our own “struct” for each device in the
driver.

• (Our driver will only have 1 device)

• The fops* we provide to the character device contains a struct of pointers
to different functions in our driver for any file operations we want to
support.

• We can leave function pointers NULL for unsupported operations. “The
exact behavior of the kernel when a NULL pointer is specified is different
for each function”

File Operations

https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814

https://elixir.bootlin.com/linux/v5.4/source/include/linux/fs.h#L1814

• Will this initialize the other function pointers to NULL?

Kernel SpaceUser Space

Major #,
Minor #

/dev/audio
Character

Device
fops

Driver

my_open()

my_read()

my_write()

struct file

“You may be wondering what happens when a device file is closed more times than it is
opened. How does a driver know when an open device file has really been closed?”

“The answer is simple: not every close system call causes the release method to be
invoked…The kernel keeps a counter of how many times a file structure is being used. The
close system call executes the release method only when the counter for the file structure
drops to 0”

open / release

read and write

“The role of the two functions is not limited to copying data to and from user-space: they also
check whether the user space pointer is valid. If the pointer is invalid, no copy is performed; if
an invalid address is encountered during the copy, on the other hand, only part of the data is
copied. In both cases, the return value is the amount of memory still to be copied. The scull
code looks for this error return, and returns-EFAULT to the user if it’s not 0.”

Whatever the amount of data the methods transfer, they should generally update the file
position at *offp to represent the current file position after successful completion of the system
call. The kernel then propagates the file position change back into the file structure when
appropriate.

	LDD3, Ch 3
	Slide Number 2
	Scull
	Major and Minor Numbers
	dev_t
	Allocating Device Numbers
	Slide Number 7
	Device Files
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Char Device Registration
	Slide Number 13
	Slide Number 14
	File Operations
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	struct file
	Slide Number 21
	Slide Number 22
	open / release
	read and write
	Slide Number 25
	Slide Number 26
	Slide Number 27

