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Abstract 

Transferring data between mutually asynchronous clock 
domains requires safe synchronization. However, the 
exact nature of synchronization sometimes eludes 
designers, and as a result synchronization circuits get 
“optimized” to the point where they do no longer operate 
correctly. This paper reviews a number of such cases, 
analyzes the causes of the errors, and offers a correct 
synchronizer circuit for each case. A correct two-flop 
synchronizer is presented. After discussing cases that 
avoid synchronization, the following synchronizers are 
reviewed: one flop, sneaky path, greedy path, wrong 
protocol, global reset, async clear, DFT leakage, pulse, 
slow-to-fast, metastability blocker, parallel and shared 
flop synchronizers.  

1. Introduction 

Transferring data between mutually asynchronous 
clock domains requires safe synchronization [1-6]. The 
operation of synchronization circuits has been recognized 
for a long time as being delicate and easy to disturb [1-3, 
7-12], but at the same time robust synchronizer design 
does guarantee safe operation for all practical purposes. 
However, the exact nature of synchronization sometimes 
eludes designers, and as a result synchronization circuits 
get “optimized” to the point where they do no longer 
operate correctly. This paper reviews a number of such 
cases, analyzes the causes of the errors, and offers a 
correct synchronizer circuit for each case. The author has 
encountered those interesting cases while teaching, while 
working with various SOC (System on Chip) design 
teams, and while reviewing certain papers submitted for 
publication. 

The paper starts by presenting a (hopefully) correct 
two-flop synchronizer. Validation means and tools are 
discussed. Section 3 describes the various synchronizers, 
analyzes the errors and pitfalls, and offers suggestions. 

This paper focuses on the most general 
synchronization of two mutually-asynchronous clock 
domains. More aggressive synchronization circuits, which 
achieve high throughput data transfer between clock 

domains having the same or related frequencies, are not 
discussed here. 

2. A Correct Two Flop Synchronizer 

The simplest and safest method for the transfer of data 
between two mutually-asynchronous clock domains 
requires a two-flop synchronizer [2-4]. A “push” 
synchronizer is shown in Figure 1, but the principles apply 
also to pull, push-pull, and control-only synchronizers.  
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Figure 1: A push synchronizer 

Bundled data is employed. The “synchronizer” 
actually comprises two synchronization circuits that 
envelope the data lines, implementing a complete 
handshake protocol. The Request (R) and Acknowledge 
(A) lines are synchronized by the receiver and sender, 
respectively. The settling window T (namely the time 
separation between the two clock inputs to the two flops 
of the synchronizers) could be a whole clock cycle or a 
fraction thereof, and could be different for each side, as 
long as the desired reliability is obtained. Synchronizer 
reliability is typically expressed in terms of Mean Time 
Between Failures [2]: 

T
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where τ is the settling time constant of the flop, TW a 
parameter related to its time window of susceptibility, fA 
the synchronizer’s clock frequency (the receiver’s clock 
frequency for the R synchronizer and the sender’s for the 
A synchronizer), and fD is the frequency of pushing data 
across the clock domain boundary. Typically, MTBF is 
designed to be at least ten times the expected life of the 
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product. If latency is not an issue, T is simply set to be a 
whole clock cycle, and for most SOCs it implies MTBF of 
many eons. 

The two synchronizers connect two simple finite state 
machines that implement the required protocol. A four-
phase protocol is specified by means of a generalized STG 
in Figure 2, where “DD” means that the data is available 
(at the sender), “UU” means that it may be removed, and 
“LL” means data latched by the receiver. (A two-phase 
protocol may also be employed; the circuits are a bit more 
complex [13, 14], and this is typically used in order to 
minimize latency on long lines.) The complete logic and 
FSM are shown in Figure 3. A send request (V, true for a 
single cycle) latches data into REGS and starts the 
sender’s FSM. The synchronized request (R2) latches the 
data into REGR and triggers the receiver’s FSM. The 
receiver is given a single-cycle “data received” (D) signal. 
The protocol is sometimes modified so that A is set as 
soon as the received data are latched, but removed only 
after the receiver has had an opportunity to use the data. 
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A+A+

UU R-

A-

R+

LL

A+A+

R-

A-

 

Figure 2: Four-phase handshake push 
synchronization protocol STG 

To consider the synchronizer’s behavior in cases of 
conflicts, assume that T equals a whole clock cycle. Upon 
a potential clock-data conflict on R, one of three possible 
outcomes may happen (Figure 4):  
a. The rising edge of R is sampled high. R2 goes high 

on cycle 2, and data is latched into REGR by the 
beginning of cycle 3. 

b. The rising edge of R is sampled low. Since the 
protocol assures that R stays high as long is A is low, 
it will be sampled high on cycle 2, when it is surely 
stable high. R2 will go high on cycle 3, and data is 
latched into REGR by cycle 4. 

c. The first flop goes metastable. With a probability of 

1-e-T/τ (which is infinitesimally close to 1), the flop 
has exited metastability by the next clock, and has 
arbitrarily settled to either high or low (the thick 
traces of R1 in the figure). If high, then R2 goes high 

on cycle 2. If low, it will surely go high on the next 
cycle, when the input R is already stable high, and R2 
goes high on cycle 3. 

A word of caution is due here: Although outcome c 
above implies that metastability typically disappears 
within a single clock cycle, the second flop is still 
required. An exception is discussed in Section 3.2 below. 
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Figure 3: Push synchronizer logic and 
protocol FSM 
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Figure 4: Three synchronization scenarios 

A VHDL specification of the synchronizer is shown in 
Figure 5. This is a highly sensitive code, where minor 
modifications may render the synchronizer useless. Some 
such innovative but often fatal modifications are reviewed 
in the rest of this paper.  

Logic validation tools are typically incapable of 
detecting any errors in such synchronizers. When 
reasonable logic assumptions are made, many erroneous 
synchronizers appear to operate perfectly well. 
Synchronizer-specific verification algorithms are required 
for this analysis. 
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-- TRANSMITTER (inputs V, A, output R) 
if rising_edge(tx_clock) then 
 A2 <= A1; A1 <= A;      -- 2 flop 
 A3 <= A2; F <= not A3 and A2; -- 1 shot 
 case (tx_fsm_state) is 
     when idle =>  
          if (V = '1') then 
  tx_fsm_state <= req; 
  R <= '1'; 
          end if; 
     when req => 
          if (A2 = '1') then 
  tx_fsm_state <= waiting; 
  R <= '0'; 
          end if; 
     when waiting => 
           if (A2 = '0') then 
  tx_fsm_state <= idle; 
           end if; 
      when others =>  
           tx_fsm_state <= idle; 
           R <= '0'; 
 end case; 
end if; 
 
-- RECEIVER (input R, output A) 
if rising_edge(rx_clock) then 
 R2 <= R1; R1 <= R;      -- 2 flop 
 R3 <= R2; D <= not R3 and R2; -- 1 shot 
 case (rx_fsm_state) is 
     when idle =>  
          if (R2 = '1') then 
  rx_fsm_state <= ack; 
  A <= '1'; 
          end if; 
     when ack => 
          if (R2 = ‘0') then 
  rx_fsm_state <= idle; 
  A <= '0'; 
          end if; 
     when others =>  
           rx_fsm_state <= idle; 
           A <= '0'; 
 end case; 
end if; 

Figure 5: Push 2-way 4-phase synchronizer 
VHDL specification 

One tool has been developed specifically for validating 
synchronization. The Avant! Clock Domain Checker [15] 
is a decent first attempt at addressing this issue. However, 
it has a number of drawbacks: First, the control and data 
signals that cross domain boundaries must be named in a 
manner that facilitates these checks. Second, it validates 
only one-sided transfers and does not examine complete 
two-sided protocols and the protocol state machines. 
Third, it only validates a limited set of pre-defined rules, 
mostly covering a simple two-flop synchronizer and data 
lines protected by it; for instance, it does not check the 
synchronization of asynchronous reset. Fourth, it only 
handles “push” (and control-only) synchronizers, but 
neither “pull” nor “push-pull” ones. Another such tool is 
@Verifier from @HDL [16].  

3. The Interesting Synchronizers 

3.1 Avoiding the Synchronizer 

The most common synchronization error is the transfer 
of a signal from one clock domain into another without 
any synchronization. In some cases the designer felt that 
failure probability was too low to worry about (he has 
learned about MTBF in the range of 10100 years, so why 
bother?). In other cases, the receiver operated at a much 
higher clock frequency than the sender, and the designer 
felt that the receiver would always be fast enough to catch 
the signal.  

The incoming data is used as a combinational input to 
a combinational circuit, which eventually feeds into a flip-
flop. Since the timing of the input is unknown, there is no 
way to guarantee the timing of the output of the 
combinational circuit. In particular, it may change 
simultaneously with the sampling edge of the clock, and 
the receiving flip-flop may enter metastability or take 
excessively long time to respond, hampering correct 
operation of the next stage of logic [2].  

How often does the receiving flop enter metastability? 
The rate of entering metastability is TW×fD×fC. For a 

0.18µm SOC (where TW≈50ps) with a clock domain 
operating at 200MHz and receiving data every 1000 
cycles, that rate is 2000/sec, namely two metastability 
events every millisecond. Ignoring such a high rate does 
take some courage! 

This error can sometimes evade detection by normal 
logic validation tools. Simulations may assume such 
timing relations among the different clocks that all timing 
constraints are met. Static timing analysis would generate 
setup and hold violation warnings for every signal that 
crosses domain boundaries, but due to the typically huge 
number of such warnings most designers treat them as 
chaff and ignore them, assuming that the synchronizers 
will handle all those issues anyway. Consequently, 
legitimate warnings can easily be overlooked. 

The error can be detected by the following clock 
domain crossing analysis, which can be performed using 
standard path analysis, e.g. as offered by logic 
synthesizers and by static timing analyzers. All possible 
pairs of clocks must be identified. For each pair, the CAD 
tool is made to report all logic paths that begin in a flop 
driven by the first clock and end in a flop driven by the 
second clock. The resulting list should be studied, either 
manually or with an automated script, and every reported 
path must be approved. Typically, the crossing lists are 
carefully maintained and are used as ‘false-path’ 
specifications, instructing the analysis tool to ignore cross-
domain paths that are already verified. 
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3.2 One Flop Synchronizer 

A deceptively effective means of cutting down on the 
two-flop synchronizer’s latency is to remove one of the 
flops (Figure 6).  

R

ASENDER RECEIVER

R

A
 

Figure 6: One-flop “synchronizer” 

The problem comes about, of course, when there is a 
clock-data conflict. As explained above, the synchronizing 
flop may take an excessively long time to respond [2]. Its 
output may be used in a standard combinational logic 
stage (the cloud in the figure), whose nominal propagation 
delay is typically close to a whole clock cycle. When the 
synchronizing flop fails (responding slowly), the input to 
the next flop will not be ready in time for the next clock 
cycle. 

The one-flop synchronizer can be detected by 
extending the analysis described above. The added step 
should validate that the output of every synchronizing flop 
feeds directly into the input of exactly one flop (driven by 
the same clock), without any logic in between. 

The one-flop synchronizer is acceptable when 
designed correctly. If the delay through the combinational 
‘cloud’ in Figure 6 is d, the settling time is T-d. If that 
time is sufficient to assure the required MTBF, then this 
synchronizer is legal.  

3.3 Sneaky Path 

Occasionally, a signal sneaks through a clock domain 
boundary unintentionally and unsynchronized. For 
instance, a signal has been moved from one clock domain 
to another as part of redesign, and some uses of the signal 
in its old domain are overlooked. It has also happened 
when a designer was unaware that a specific signal 
belonged to a different clock domain. In yet other cases, a 
signal S from a different clock domain is synchronized 
and renamed S_sync, but the designer has used S rather 
than S_sync by mistake.  

The situation is similar to case 3.1 above, and so are 
the solutions. 

3.4 Greedy Path Synchronizer 

The designer employed a good two-flop synchronizer, 
but decided to save a little latency with the arrival 

detector: D= 1 2R R×  (Figure 7). This is quite similar to 
the one-flop synchronizer: The problem is that D is used 

with additional combinational logic, and the timing of that 
combinational path is typically designed to fit within a 
single clock cycle. But in cases of clock-data conflict of 
R, R1 may take longer than the normal flop tPD to 
stabilize, and consequently the entire combinational path 
from R1 through D and to the last flop fails to converge 
during a single cycle. The right solution, obviously, is to 

add a flop and set D= 2 3R R×  (as in Figure 3). 
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Figure 7: Greedy path “synchronizer” 

3.5 Wrong Protocol 

Consider the following example. The sender in a push 
synchronizer is a CPU that can be tuned to operate in the 
range of 60-100 MHz. The receiver is a communication 
modem based on a 55MHz clock. A push synchronizer is 
used to transfer data from the CPU to the modem. The 
designer has correctly realized that, once R is set, it would 
take at most four cycles of the receiver’s clock to latch the 
data into REGR (as in Figure 4). Based on the relative 
speeds, this would mean up to eight cycles of the faster 
sender’s clock. To save time and logic, the designer 
eliminated the A line and its synchronizer; instead, he 
inserted a nine-cycle delay in the sender’s FSM. After the 
delay, R is reset and the transfer is assumed finished. 

There were two problems with that novel design. First, 
the designer did not realize that he had violated the safety 
(or 1-boundedness) requirement of the protocol (namely, 
transitions must be acknowledged, or else an STG arc 
might accumulate multiple tokens [17, 18]). Although the 
data was safely latched into REGR, at times the receiver 
was busy doing something else and did not manage to 
make use of the data before a new set of data has arrived, 
over-writing the old.  

Second, while the modem remained at 55MHz, the 
CPU in a later chip generation was sped up to 200MHz. 
At that rate, nine sender’s clock cycles weren’t enough 
any more to cover four modem cycles, and the 
synchronizer broke down. 

There are other ways by which the protocol can be 
violated. A powerful protocol verification algorithm might 
provide a useful tool to weed out such innovations. 

3.6 Global Reset Synchronizer 

In a multi-frequency GALS (Globally Asynchronous, 
Locally Synchronous) SOC, a global reset signal is 
naturally asynchronous to at least some of the clock 
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domains. The leading edge of the reset signal is harmless, 
as it forces all circuits to a known starting state. The 
trailing edge, on the other hand, is the culprit in some 
chips. During global reset all the various clocks are started 
and all PLLs settle into their respective different 
frequencies. When the reset is removed, it can happen 
simultaneously with the sampling edge of one of the 
clocks. The global reset is typically connected into the 
asynchronous clear (or preset) input of many flip-flops, 
and its trailing edge must respect a setup constraint, or 
else the flops may enter metastability. 

A safe interface is shown in Figure 8. It belongs with 
each of the several clock generators of the SOC. While the 
leading edge is transferred without delay (when the clocks 
may be inoperative), the trailing edge is synchronized. 

RESET

CLOCK

RESET WITH

SYNCHRONIZED

TRAILING EDGE

 

Figure 8: Global reset synchronizer 

3.7 Async Clear Synchronizer 

Occasionally (and contrary to the wisdom of typical 
synchronous design methodologies) asynchronous clear or 
preset of a flop may be employed as part of the logic 
(rather than for global reset, as discussed in Section 3.6). 
Some designers feel that, since this is an asynchronous 
clear, it needs not be synchronized even when it crosses 
clock domain boundaries (Figure 9). 

The problem is very similar to that described in 
Section 3.6: Removal of the asynchronous clear signal 
may concur with the rising edge of the receiver’s clock, 
potentially leading to metastability. The solution is either 
to synchronize the reset signal with two flops, or (when 
the leading edge must not be delayed) design an 
asymmetric synchronizer as in Figure 10. 

CLR

RESET

 

Figure 9: Asynchronous clear 

CLR

RESET

 

Figure 10: Synchronized-trail clear 

3.8 DFT Leakage 

Simple production testers may have only a single 
clock. To test a GALS SOC on such testers, all clocks are 
shorted together. Static faults (such as stuck-at) and some 
dynamic faults (speed testing of the individual clock 
domains) are properly tested that way. The clock shorts of 
course must be ignored during path analysis (by means of 
manually assembled ‘false-path’ lists or by instructing the 
analysis to ignore all paths that are conditioned upon a 
test-enable signal). But certain changes of the design may 
result in an error (sneaky) path masked by the list. 

The solution is to recheck the entire false-path list as a 
final check, after all design changes are completed. 

3.9 Pulse Synchronizer 

The pulse synchronizer (Figure 11) is designed to pass 
a single “pulse” (a logic signal that is set to ‘1’ for only a 
single clock cycle) from one clock domain to another.  A 
pulse on P causes the sender’s flop to toggle. Eventually, 
D is set high for a single cycle of the receiver’s clock as a 
result.  

The designer was lucky to discover the problem when 
the circuit was tried on an FPGA, prior to tapeout. 
Sometimes the P input was set to ‘1’ for two consecutive 
cycles. At other times two pulses came in succession, with 
only one cycle in between. In both cases the synchronizer 
has generated undesirable results. The astute reader can 
easily figure out what they were. The situation was 
mended by replacing this with a standard control-only 
synchronizer, operating with a standard two—phase 
protocol. 

SENDER RECEIVER

D

ENP

 

Figure 11: Pulse “synchronizer” 

3.10 Slow-to-Fast Synchronizer 

When the sender uses a slower clock than the receiver, 
designers can simplify the handshake protocol: The R line, 
when set for a single cycle of the sender’s clock, is 
sampled by at least two edges of the receiver’s clock. If 
the first edge misses, the second one is guaranteed to 
sample R. If the first one succeeds, further sampling is 
blocked (Figure 12), so that metastability during the 
second edge is avoided. 
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Figure 12: Slow-to-fast “synchronizer” 

Such a simplified synchronizer typically works just 
fine. Except that SOCs tend to evolve and change clock 
frequencies. Sometimes clocks are changed during the 
design, when certain frequencies turn out to be too fast. In 
other cases, when a new product generation is launched or 
when the SOC is ported to a different fabrication process, 
slow domains may be sped up, and the assumption of 
who’s faster may no longer hold. Hopefully the 
assumption has not been forgotten in the meantime, and 
the only adverse effect is that the chip needs to undergo a 
new logic and physical design, merely due to the 
‘optimized’ synchronizer. 

3.11 Metastability Blocker 

A designer has suggested blocking metastability by the 
circuit of Figure 13. RESET clears the SR latch and the 
synchronizing flop. When the clock is high, if INPUT 
rises, the latch is set. When the clock goes low, the 
asynchronous input is blocked and only the SR latch 
output is connected to the flop. When the clock rises, it 
samples the synchronous output of the latch, rather than 
the asynchronous input. 
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D Q

INPUT

RESET SYNCHRONIZED
INPUT

CLOCK

 

Figure 13: Metastability “blocker” 

The designer has missed two problem scenarios, 
though. If INPUT rises exactly when the clock goes low, 
the SR latch can become metastable. It will most likely 
settle by the next rising edge of the clock. In other words, 
the metastability risk has simply been transferred from the 
flop to the latch, and one-half clock cycle is allowed for 
settling. If the proper protocol is employed (e.g., INPUT 
stays high until acknowledged), the synchronization will 
function correctly. 

The second scenario is more dangerous. If INPUT 
rises exactly when the clock rises, the SR latch will 
probably miss it but the flop may become metastable. 

While the first scenario seems to be handled properly by 
the circuit (in spite of the designer’s ignorance), the latter 
case may cause damage in the circuit that follows the flop. 

Various “metastability blockers” or circuits that 
“eliminate” metastability are repeatedly reinvented and 
occasionally get published. Fortunately, most practitioners 
have learned to take them with a grain of salt. 

3.12 Parallel Synchronizer 

A careful designer assumed that more is better and, 
instead of using the recommended complex structure for a 
push synchronizer, he inserted a separate two-flop 
synchronizer on each data line (Figure 14). That scheme 
also seems to save one cycle time (no need to wait one full 
cycle after R2 is stable and until REGR latches the 
incoming data, as in Figure 3). 

..
.

 

Figure 14: Parallel “synchronizer” 

This scheme is a yet another prescription for a sure 
disaster. On clock-data conflict, each of the several data 
synchronizers may end up doing something different: 
Some may sample the new data, others may miss it and 
retain the old data, while yet others may enter 
metastability. Of the metastable ones, some may settle to 
‘1’ while others may settle to ‘0’. There is no way of 
telling which is which, as all four options are equally 
legitimate and possible outcomes.  

To emphasize the severity of failure, recall that a 
typical single synchronizer may enter metastability twice 
every millisecond, as computed in Section 3.1. Thus, a 32 
bit parallel synchronizer faces a risk of failure every 16 
microseconds! 

Another incarnation of this problem employs three 
parallel synchronizers and takes a vote of their outputs. Is 
this any safer than the non-voting parallel synchronizer? 

3.13 Shared Flop Synchronizer 

The synchronization handshake protocol is sometimes 
implemented with a signaling latch, set by the sender and 
cleared by the receiver. A somewhat misleading example 
based on two signaling flops has been published by a 
leading FPGA vendor (Figure 15). The problem is that the 
RECEIVE signal, which is driven by the sender’s clock, is 
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never synchronized by the receiver’s (at least not in the 
schematics shown in the publication).  

D Q

READY

1

CLR

DQ

ACK

1

CLR

DATA

RECEIVETRANSMIT

 

Figure 15: Shared flop “synchronizer” 

A better scheme for a shared latch synchronizer 
(Figure 16) has been shown by Dike [19] and has been 
employed successfully in a low-voltage product (low 
supply voltage increases the risk of metastability). The 
control signals generated by the shared latch are both 
carefully synchronized with their respective clocks. 

WRITE VALID

DQ DQ D QD Q

RS

Q

WRITE
CLK

ACK

READ VALID

READ
CLK

REQ

 

Figure 16: A correct shared latch 
synchronizer 

3.14 Conservative Synchronizer 

The careful designer occasionally wishes to be on the 
safe side and, when synchronization latency is not an 
issue, adds “just a few more stages” to the synchronizer 
(Figure 17). While this is not an error, it is interesting to 
learn what additional level of safety is thus obtained. 
Considering an SOC with two clock domains where the 
receiver operates at 200 MHz (a reasonable frequency for 

the 0.18µm technology), and where data is exchanged 
every ten clock cycles (as a worst case), and assuming 

TW=50ps, τ=10ps (all ‘conservative’ numbers), the normal 

two-flop MTBF is 500 5 2042 10 10e × = years. This is rather 

safe, when we recall that the age of the universe is 1010 
years. The added cycle time provides an extra safety 

factor of 500e , achieving a more comforting level of 10420 
years. Imagine how much better MTBF could have been if 
you used four flops, rather than three! 

SENDER RECEIVER
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A
 

Figure 17: Conservative synchronizer 

4. Conclusions 

A few examples of synchronization design errors have 
been presented and analyzed. As long as there are no fool-
proof algorithms and tools to validate synchronizers, the 
rules to safe design should be closely watched. A strict 
design methodology and discipline should be enforced, 
especially prohibiting arbitrary “improvements” of 
synchronizers and shortcuts in their design and 
implementation. Optimizations that may impede future 
design reuse should be avoided. Knowledgeable rigorous 
validation should be carried out to verify that all crossings 
of clock domains are understood and legitimate. Global 
signals that span multiple domains, such as reset and 
clocks, should be examined carefully. Such validation 
should be repeated after every design change and before 
final design closure. 

Present efforts to design synchronizer cell libraries and 
to develop rigorous tools for synchronization validation 
may help alleviate these issues and assure safe GALS 
SOCs.  

Synchronization issues may be more difficult to 
examine and validate with third-party IP cores, and 
especially “hard” cores whose internal logic design is 
unknown to the SOC designer. The architect should insist 
on at least a complete specification of their synchronizing 
circuits. 

A certain type of synchronizers has not been dealt with 
in this paper, namely fast synchronizers for multi-sync 
[20] or mesochronous [4, 5] clock domains. Their design 
and validation are more complex and deserve another 
paper. 

Acknowledgement 

The author is grateful to the many imaginative 
designers whose innovations ended up in this paper. Their 
names are kept in confidence. The anonymous referees 
added some interesting examples to this catalog and 
helped weed out some of the bugs; the author alone should 
be blamed for any remaining mistakes. 

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03) 
1522-8681/03 $17.00 © 2003 IEEE 



 

 
8

References 

[1] J. Jex and C. Dike, "A fast resolving BiNMOS 
synchronizer for parallel processor interconnect," 
IEEE Journal of Solid-State Circuits, vol. 30, pp. 
133-139, 1995. 

[2] C. Dike and E. Burton, "Miller and Noise Effects 
in a Synchronizing Flip-Flop," IEEE Journal of 
Solid-State Circuits, vol. 34, pp. 849-855, 1999. 

[3] D. J. Kinniment, A. Bystrov, and A. Yakovlev, 
"Synchronization Circuit Performance," IEEE 
Journal of Solid-State Circuits, vol. 37, pp. 202--
209, 2002. 

[4] W. J. Dally and J. W. Poulton, Digital System 
Engineering(Eds.): Cambridge University Press, 
1998. 

[5] T. H.-Y. Meng, Synchronization Design for 
Digital Systems(Eds.): Kluwer Academic 
Publishers, 1991. 

[6] D. J. Kinniment and J. V. Woods, 
"Synchronization and Arbitration Circuits in 
Digital Systems," Proceedings of the IEE, vol. 
123, pp. 961--966, 1976. 

[7] T. J. Chaney and C. E. Molnar, "Anomalous 
Behavior of Synchronizer and Arbiter Circuits," 
IEEE Transactions on Computers, vol. C-22, pp. 
421--422, 1973. 

[8] M. Pechoucek, "Anomalous Response Times of 
Input Synchronizers," IEEE Transactions on 
Computers, vol. 25, pp. 133--139, 1976. 

[9] W. Fleischhammer and O. Dortok, "The 
anomalous behavior of flip-flops in synchronizer 
circuits," IEEE Transactions on Computers, vol. 
28, pp. 273--276, 1979. 

[10] H. J. M. Veendrick, "The Behavior of Flip-Flops 
Used as Synchronizers and Prediction of Their   
Failure Rate," IEEE Journal of Solid-State 
Circuits, vol. 15, pp. 169--176, 1980. 

[11] L. Kleeman and A. Cantoni, "Can redundancy 
and masking improve the performance of 
synchronizers," IEEE Transactions on 
Computers, vol. 35, pp. 643--646, 1986. 

[12] Y. Semiat and R. Ginosar, "Timing 
Measurements of Synchronization Circuits," 
under http://www.ee.technion.ac.il/~ran --> 
publications. 

[13] P. Day and J. V. Woods, "Investigation into 
Micropipeline Latch Design Styles," IEEE 

Transactions on VLSI Systems, vol. 3, pp. 264--
272, 1995. 

[14] A. Peeters and K. v. Berkel, "Single-Rail 
Handshake Circuits," in Asynchronous Design 
Methodologies: IEEE Computer Society Press, 
1995, pp. 53--62. 

[15] "Clock Domain Checker User Manual," Avant! 
Corporation v2001.3, 2001. 

[16] atHDL, "Multiple Clock Domain Analysis," 
www.athdl.com. 

[17] A. V. Yakovlev, "On Limitations and Extensions 
of STG model for Designing Asynchronous   
Control Circuits," in Proc. International Conf. 
Computer Design (ICCD): IEEE Computer 
Society Press, 1992, pp. 396--400. 

[18] Principles of Asynchronous Circuit Design: A 
Systems Perspective, S. Furber (Eds.): Kluwer 
Academic Publishers, 2001. 

[19] C. Dike, "Sychronization Tutorial," presented at 
Sixth International Symposium on Advanced 
Research in Asynchronous Circuits   and Systems 
(ASYNC2000), 2000. 

[20] R. Ginosar and R. Kol, "Adaptive 
Synchronization," in Proc. International Conf. 
Computer Design (ICCD), 1998, pp. 188--189. 

 

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03) 
1522-8681/03 $17.00 © 2003 IEEE 




