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SystemVerilog FSMs

+ SystemVerilog code is needed for each of the
three components of an FSM

- State FF code
- IFL code
- OFL code
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State Machine Coding Styles

* One always_comb block for IFL and OFL and
one always_ff block for state register

* One always ff block for the state register
and IFL and the OFL is done using either
dataflow assign statements or an
always_comb block.

+ Three separate blocks for the state register,
IFL, and ODL
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Moore Output
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Enumerate the states » typedef enum {s0, sl, s2, s3} StateType;
StateType ns, cCs;

A Sequence Detector

always comb

begin
ns = cs; // default
7z = 0; // default

1f (reset)

ns = s0;
else
case (cs)
sO: 1f (!Xin)
ns = sl;
o sl: 1f (Xin)
Xin ns = s2;
s2: 1f (Xin)
ns = s3;
else
ns = sl;
s3: Z = 1"bl; // Moore
endcase
end

always ff @ (posedge clk)

BYU © 2018 BYU cs <= ns;
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Moore Output

always ff @ (posedge clk)
cs <= ns;
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always comb

begin
ns = cs;
A Sequence Detector e
1f (reset)
ns = s0;
else
case (cs)
sO: 1f (!Xin)
ns = sl;
sl: 1f (Xin)
ns = s2;
s2: 1f (Xin)
oy ns = s3;
Xin
else
ns = sl;
s3I+ = 1"l
endcase
end

//,.Assign Z=(cs
Use dataflow for Moore output

always ff @ (posedge clk)
cs <= ns;
BYU ¢ 1550
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typedef enum {SO0, S1, S2, S3} StateType;
StateType ns, cs;

A Better Sequence

always comb

DZTZCTOI" begin
Zz = 0;

i1f (reset)

ns = S0O;
else
case (cs)

SO: 1f (!Xin) ns = S1;
Sl: 1f (Xin) ns = S2;
S2: 1f (Xin) ns = S3;

else ns = S1;
o, S3: begin
Xin 7 = 1'bl;

if (!Xin) ns = S1;

else ns = S0;
end
endcase
end

always ff @ (posedge clk)
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State Transition and Output
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typedef enum {sIdle, sToken, sSpray} StateType;
A Car Wash FSM ~ Stacetvee ne, co;
always comb
TOKEN’ begin
ns = cs;
clrt = 0O;
spray = 0;
i1f (reset)
ns = sldle;
else
case (cs)
sIdle: 1if (token) ns = sToken;
sToken: begin
clrt = 1;
ns = sSpray;
end
sSpray: begin
spray = 1;
if (tdone) ns = sIdle;
end
default: ns = slIdle;
endcase
end
BYU © 2018 BYU always ff @ (posedge clk) 14
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State Transition and Output
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Mealy Output
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Sequence. typedef enum {s0, sl, s2} stateType
DeTeCTOP WITh stateType ns, cs;

Mealy Output

always comb

begin
Xin ns = cs;
Zz = 0;
1f (reset)
ns = s0;
reset else
case (state)
sO: 1f (!Xin) ns = sl;
sl: 1f (Xin) ns = s2;
s2: 1f (Xin)
, o begin
Xin/Z Xin ns = s0;
Z = 1; // Mealy output
end
else ns = sl;
endcase

Xin’
end

always ff @ (posedge clk)
cs <= ns;
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typedef enum {s0, sl1, s2, ERR=’'X} stateType
stateType ns, cs;

Defensive Coding

STyle always comb
begin
Xin ns = ERR;
Zz = 0;
1f (reset)
ns = s0;

reset
(state)

O: 1if (!Xin) ns = sl;
else ns = s0;
sl: 1f (Xin) ns = s2;
. » else ns = sl;
Xin/Z Xin’ s2: if (Xin)
begin
ns = s0;
Z = 1; // Mealy output
end
else ns = sl;
endcase
end
BYU always ff @ (posedge clk)
© 2018 BYU cs <= ns; 18
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State Transition and Output
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Input Forming Logic

- Both Combinational and

Seqguential Logic

always ff @ (posedge clk)
case (current state)

SO: 1f (Xin == 1’b0) current state <= Sl

Sl: 1if (Xin == 1’bl) current state <= 52

S2: 1f (Xin == 1’bl) current state <= S3
else current state <= S1;

S3: 1f (Xin == 1’b0) current state <= Sl

else current state <= S0;
endcase
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always ff @ (posedge clk)
case (current state)

module sequence (

, £ 1 , 1%, X SO0: 1if (Xin == 1'b0) current state <= S1;
gniu ‘ igliccz r 1T Sl: if (Xin == 1’bl) current state <= S2;
? bu 9 S2: 1f (Xin == 1'Dbl) current state <= S3;

)7 else current state <= S1;
. S3: 1f (Xin == 1'b0) current state <= S1;

typedef enum {SO0, S1, S2, S3} StateType; else current state <= S0:

StateType next state, current state = S0O; -
— - endcase
assign Z = (current state == S3);
endmodule

CLK

Xin

urent ™so X so X s1 X st

X s2 X s3 X s1 X s2

_state

Z
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Can IFL, State FFs, and OFL be

combined?
always ff @ (posedge clk) Problem:
begin A FF will be generated for the ‘Z’ output
2 <= 17007 (all signals assigned in a clocked
case (current state) | il h FE
50 - always process will have an FF).
if (Xin == 1’'b0) current state <= S1;
S1:
if (Xin == 1’'bl) current state <= S52;
S2:
if (Xin == 1’'bl) current state <= S53;
else current state <= S1;
S3: begin
Z <= 1'bl;
1f (Xin == 1'b0) current state <= S1;
delse current_state <= 30; An FF on the output Z will cause the
en .
cndease signal to be delayed by one clock
end cycle. The output will no longer be
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module sequence ( SO0: 1f (Xin == 1'b0) current state <= S1;

input logic clk, Xin, else current state <= S0;
output logic Z Sl: if (Xin == I’bl) current state <= S2;
) ; else current state <= S1;
S2: 1if (Xin == 1’'bl) current state <= S3;
typedef enum {SO, S1, S2, S3} StateType; else current state <= S1;
StateType next state, current state = SO; S3: begin
Z <= 1"bl;
always ff@ (posedge clk) begin if (Xin == 1’'b0) current state <= SI1;
Z <= 1'b0; else current state <= S0;
case (current state) end B
endcase
end
endmodule

CLK
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