Chapter 23
SystemVerilog State Machines

ECEn 220
Fundamentals of Digital Systems

BYU

BRIGHAM YOUNG
UNIVERSITY

Designing
Digital
Systems With
SystemVerilog

o
*
(4]
S
(s
1.
pr
0
n
=)
=

BYU 156

Computer Engineering
Electrical Engineering

inputs_

Components of an FSM

Input
Forming
Logic

Next

|
)

remon
State B)
> 1 —D Q

BYU 0158

Computer Engineering
Electrical Engineering

Current
State State
Memory
~
B ~f
Output | oyputs
> Forming
Logic

ECEn 220

Components of a FSM

Current
State State
¥ Next Memory
Inputj State
Inputs E : . _ D
—— | Forming > D Q —
Logic J
/\I [
1. State memory | OuI o
* Flip-flops to hold the current state Forn?in Outputs
« Sequential Logic ing
Logic

ECEn 220

BYU © 2018 BYU

Components of a FSM

Current
State State
Y Next Memory
|nputs InpUt W State
——| Forming > D Ql_} —
Logic J
/\I [
1. State memory | 0 t t
* Flip-flops to hold the current state utpu Outputs
. . Forming
« Sequential Logic)
Logic

2. Input Forming Logic (IFL)

« Logic to determine the next state of the FSM

« Combinational Logic

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220

Components of a FSM

Current
State State
Y Next Memory
Input 7 Stat
Inputs | = ate _ N
—— | Forming > D Q _
Logic J
/\I [
1. State memory | 0 t t
* Flip-flops to hold the current state - Jtpu Outputs
- Sequential Logic orming
Logic

2. Input Forming Logic (IFL)
« Logic to determine the next state of the FSM
« Combinational Logic
3. Output Forming Logic (OFL)
* Logic to determine FSM outputs
« Combinational logic

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220

SystemVerilog FSMs

+ SystemVerilog code is needed for each of the
three components of an FSM

- State FF code
- IFL code
- OFL code

BYU 0158

Electrical Engineering

ECEn 220 6

State Machine Coding Styles

* One always_comb block for IFL and OFL and
one always_ff block for state register

* One always ff block for the state register
and IFL and the OFL is done using either
dataflow assign statements or an
always_comb block.

+ Three separate blocks for the state register,
IFL, and ODL

BYU 0158

Electrical Engineering

ECEn 220

Moore Output

Current
State State
' Next Memory
Inputs Inpgtw State { _ N
—— | Forming > D Q } _
Logic J
M \,
Output | oyputs
Forming
Logic

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220

Enumerate the states » typedef enum {s0, sl, s2, s3} StateType;
StateType ns, cCs;

A Sequence Detector

always comb

begin
ns = cs; // default
7z = 0; // default

1f (reset)

ns = s0;
else
case (cs)
sO: 1f (!Xin)
ns = sl;
o sl: 1f (Xin)
Xin ns = s2;
s2: 1f (Xin)
ns = s3;
else
ns = sl;
s3: Z = 1"bl; // Moore
endcase
end

always ff @ (posedge clk)

BYU © 2018 BYU cs <= ns;

Computer E11gineeljing ECEn 220

Electrical Engineering

Moore Output

always ff @ (posedge clk)
cs <= ns;

/
Current
] State State
X ext Memory
Inputs Input 7 State
Forming > D QQ_ } —
Logic J

Output
Forming
Logic

Outputs

always comb
begin

end

ECEn 220 10

BYU 050

always comb

begin
ns = cs;
A Sequence Detector e
1f (reset)
ns = s0;
else
case (cs)
sO: 1f (!Xin)
ns = sl;
sl: 1f (Xin)
ns = s2;
s2: 1f (Xin)
oy ns = s3;
Xin
else
ns = sl;
s3I+ = 1"l
endcase
end

//,.Assign Z=(cs
Use dataflow for Moore output

always ff @ (posedge clk)
cs <= ns;
BYU ¢ 1550

Electrical Engineering

== S3) ? 1'bl : 1’Db0;

11

typedef enum {SO0, S1, S2, S3} StateType;
StateType ns, cs;

A Better Sequence

always comb

DZTZCTOI" begin
Zz = 0;

i1f (reset)

ns = S0O;
else
case (cs)

SO: 1f (!Xin) ns = S1;
Sl: 1f (Xin) ns = S2;
S2: 1f (Xin) ns = S3;

else ns = S1;
o, S3: begin
Xin 7 = 1'bl;

if (!Xin) ns = S1;

else ns = S0;
end
endcase
end

always ff @ (posedge clk)

BYU © 2018 BYU ST 12

Computer Engineering
Electrical Engineering

State Transition and Output

clock | | ¢ [¢ L4 L4 ¢ L4 L4 L4 L4 L4 [8

Xin

Q SO XSO)Y SO) S1)St)S2)S3)S1)St)S2)X8S3)So0

Z

BYU 0158

Electrical Engineering

ECEn 220 13

typedef enum {sIdle, sToken, sSpray} StateType;
A Car Wash FSM ~ Stacetvee ne, co;
always comb
TOKEN’ begin
ns = cs;
clrt = 0O;
spray = 0;
i1f (reset)
ns = sldle;
else
case (cs)
sIdle: 1if (token) ns = sToken;
sToken: begin
clrt = 1;
ns = sSpray;
end
sSpray: begin
spray = 1;
if (tdone) ns = sIdle;
end
default: ns = slIdle;
endcase
end
BYU © 2018 BYU always ff @ (posedge clk) 14

Computer Engineering
Electrical Engineering

cs <= nsy;

State Transition and Output

TDONE

ﬂ@cmck|+++++++++++
Token

TDONE'
TDone

Q Idle fIdlefIdleX T X S X S X S XIdie) Idle X Idle X Idle X Idle

CLRT

SPRAY

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220 15

Mealy Output

Current
State State
Y Next Memory
Inputs Inpgt) State { — b
| Forming > —D Q } —
Logic J
M ,,
Output | oyputs
> Forming
Logic

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220

16

Sequence. typedef enum {s0, sl, s2} stateType
DeTeCTOP WITh stateType ns, cs;

Mealy Output

always comb

begin
Xin ns = cs;
Zz = 0;
1f (reset)
ns = s0;
reset else
case (state)
sO: 1f (!Xin) ns = sl;
sl: 1f (Xin) ns = s2;
s2: 1f (Xin)
, o begin
Xin/Z Xin ns = s0;
Z = 1; // Mealy output
end
else ns = sl;
endcase

Xin’
end

always ff @ (posedge clk)
cs <= ns;

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220 17

typedef enum {s0, sl1, s2, ERR=’'X} stateType
stateType ns, cs;

Defensive Coding

STyle always comb
begin
Xin ns = ERR;
Zz = 0;
1f (reset)
ns = s0;

reset
(state)

O: 1if (!Xin) ns = sl;
else ns = s0;
sl: 1f (Xin) ns = s2;
. » else ns = sl;
Xin/Z Xin’ s2: if (Xin)
begin
ns = s0;
Z = 1; // Mealy output
end
else ns = sl;
endcase
end
BYU always ff @ (posedge clk)
© 2018 BYU cs <= ns; 18

Computer Engineering
Electrical Engineering

State Transition and Output

Clock | | 4 | 4 |4 |4 & 4 4 [8 8 [8 [0

Xin

Q SO XSO SO)Y St)XSt1)sS2)St)sSt)sS2)So)Soj)So

Z

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220 19

Input Forming Logic

- Both Combinational and

Seqguential Logic

always ff @ (posedge clk)
case (current state)

SO: 1f (Xin == 1’b0) current state <= Sl

Sl: 1if (Xin == 1’bl) current state <= 52

S2: 1f (Xin == 1’bl) current state <= S3
else current state <= S1;

S3: 1f (Xin == 1’b0) current state <= Sl

else current state <= S0;
endcase

ECEn 220

BYU 050

20

always ff @ (posedge clk)
case (current state)

module sequence (

, £ 1 , 1%, X SO0: 1if (Xin == 1'b0) current state <= S1;
gniu ‘ igliccz r 1T Sl: if (Xin == 1’bl) current state <= S2;
? bu 9 S2: 1f (Xin == 1'Dbl) current state <= S3;

)7 else current state <= S1;
. S3: 1f (Xin == 1'b0) current state <= S1;

typedef enum {SO0, S1, S2, S3} StateType; else current state <= S0:

StateType next state, current state = S0O; -
— - endcase
assign Z = (current state == S3);
endmodule

CLK

Xin

urent ™so X so X s1 X st

X s2 X s3 X s1 X s2

_state

Z

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220 21

Can IFL, State FFs, and OFL be

combined?
always ff @ (posedge clk) Problem:
begin A FF will be generated for the ‘Z’ output
2 <= 17007 (all signals assigned in a clocked
case (current state) | il h FE
50 - always process will have an FF).
if (Xin == 1’'b0) current state <= S1;
S1:
if (Xin == 1’'bl) current state <= S52;
S2:
if (Xin == 1’'bl) current state <= S53;
else current state <= S1;
S3: begin
Z <= 1'bl;
1f (Xin == 1'b0) current state <= S1;
delse current_state <= 30; An FF on the output Z will cause the
en .
cndease signal to be delayed by one clock
end cycle. The output will no longer be

BYU 0158

Computer Engineering
Electrical Engineering

ECEn 220

asserted during the S3 state, but
during the following cycle.

22

module sequence (SO0: 1f (Xin == 1'b0) current state <= S1;

input logic clk, Xin, else current state <= S0;
output logic Z Sl: if (Xin == I’bl) current state <= S2;
) ; else current state <= S1;
S2: 1if (Xin == 1’'bl) current state <= S3;
typedef enum {SO, S1, S2, S3} StateType; else current state <= S1;
StateType next state, current state = SO; S3: begin
Z <= 1"bl;
always ff@ (posedge clk) begin if (Xin == 1’'b0) current state <= SI1;
Z <= 1'b0; else current state <= S0;
case (current state) end B
endcase
end
endmodule

CLK

Xin

C:J;Z[: so X so X s

—

X s1 X s2 X s3 K s S2

Z

M \\/
BYU © 2018 BYU

Computer Engineering
Electrical Engineering

ECEn 220 23

