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SystemVerilog State Machines
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• Flip-flops to hold the current state
• Sequential Logic

2. Input Forming Logic (IFL)
• Logic to determine the next state of the FSM
• Combinational Logic

3. Output Forming Logic (OFL)
• Logic to determine FSM outputs
• Combinational logic
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• SystemVerilog code is needed for each of the 
three components of an FSM
– State FF code
– IFL code
– OFL code
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• One always_comb block for IFL and OFL and 
one always_ff block for state register

• One always ff block for the state register 
and IFL and the OFL is done using either 
dataflow assign statements or an 
always_comb block.

• Three separate blocks for the state register, 
IFL, and ODL
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typedef enum {s0, s1, s2, s3} StateType;
StateType ns, cs;

always_comb
begin

ns = cs;    // default
Z = 0; // default

if (reset)
ns = s0;

else
case (cs)

s0: if (!Xin)
ns = s1;

s1: if (Xin)
ns = s2;

s2: if (Xin)
ns = s3;

else
ns = s1;

s3: Z = 1’b1;   // Moore
endcase

end

always_ff @(posedge clk)
cs <= ns;
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Enumerate the states
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always_ff @(posedge clk)
cs <= ns;

always_comb
begin

end
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A Sequence Detector
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always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = s0;

else
case (cs)

s0: if (!Xin)
ns = s1;

s1: if (Xin)
ns = s2;

s2: if (Xin)
ns = s3;

else
ns = s1;

s3: Z = 1’b1;
endcase

end

Assign Z=(cs == S3) ? 1’b1 : 1’b0;

always_ff @(posedge clk)
cs <= ns;

Use dataflow for Moore output
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typedef enum {S0, S1, S2, S3} StateType;
StateType ns, cs;

always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = S0;

else
case (cs)

S0: if (!Xin) ns = S1;
S1: if (Xin) ns = S2;
S2: if (Xin) ns = S3;

else ns = S1;
S3: begin

Z = 1’b1;
if (!Xin) ns = S1;

else ns = S0;
end

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset

A Better Sequence 
Detector



© 2018 BYU

State Transition and Output
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A Car Wash FSM
typedef enum {sIdle, sToken, sSpray} StateType;
StateType ns, cs;

always_comb
begin

ns = cs;
clrt = 0;
spray = 0;

if (reset)
ns = sIdle;

else
case (cs)

sIdle: if (token) ns = sToken;
sToken: begin

clrt = 1;
ns = sSpray;

end
sSpray: begin

spray = 1;
if (tdone) ns = sIdle;

end
default: ns = sIdle;

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset
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State Transition and Output
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typedef enum {s0, s1, s2} stateType
stateType ns, cs;

always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = s0;

else
case (state)

s0: if (!Xin) ns = s1;
s1: if (Xin) ns = s2;
s2: if (Xin)

begin
ns = s0;
Z = 1; // Mealy output

end
else ns = s1;

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset
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Defensive Coding 
Style
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typedef enum {s0, s1, s2, ERR=’X} stateType
stateType ns, cs;

always_comb
begin

ns = ERR;
Z = 0;

if (reset)
ns = s0;

else
case (state)

s0: if (!Xin) ns = s1;
else ns = s0;

s1: if (Xin) ns = s2;
else ns = s1;

s2: if (Xin)
begin

ns = s0;
Z = 1; // Mealy output

end
else ns = s1;

endcase
end

always_ff @(posedge clk)
cs <= ns;
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State Transition and Output
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• Both Combinational and
Sequential Logic
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always_ff @(posedge clk)
case (current_state)

S0: if (Xin == 1’b0) current_state <= S1
S1: if (Xin == 1’b1) current_state <= S2
S2: if (Xin == 1’b1) current_state <= S3

else current_state <= S1;
S3: if (Xin == 1’b0) current_state <= S1

else current_state <= S0;
endcase

20
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CLK

Z

current
_state S0 S0 S1 S1 S2 S3 S1 S2

module sequence(
input logic clk,Xin,
output logic Z
);  

typedef enum {S0, S1, S2, S3} StateType;
StateType next_state, current_state = S0;

always_ff @(posedge clk)
case (current_state)
S0: if (Xin == 1’b0) current_state <= S1;
S1: if (Xin == 1’b1) current_state <= S2;
S2: if (Xin == 1’b1) current_state <= S3;

else current_state <= S1;
S3: if (Xin == 1’b0) current_state <= S1;

else current_state <= S0;
endcase

assign Z = (current_state == S3);

endmodule

Xin
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Can IFL, State FFs, and OFL be 
combined?
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always_ff @(posedge clk)
begin

Z <= 1’b0;
case (current_state)

S0:
if (Xin == 1’b0) current_state <= S1;

S1: 
if (Xin == 1’b1) current_state <= S2;

S2:
if (Xin == 1’b1) current_state <= S3;
else current_state <= S1;

S3: begin
Z <= 1’b1;
if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;

end
endcase

end

Problem: 

A FF will be generated for the ‘Z’ output 

(all signals assigned in a clocked 

always process will have an FF).

An FF on the output Z will cause the 

signal to be delayed by one clock 

cycle. The output will no longer be 

asserted during the S3 state, but 

during the following cycle.
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CLK

Z

current
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module sequence(
input logic clk, Xin,
output logic Z
); 

typedef enum {S0, S1, S2, S3} StateType;
StateType next_state, current_state = S0;

always_ff@(posedge clk) begin
Z <= 1’b0;
case (current_state)

S0: if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;

S1: if (Xin == 1’b1) current_state <= S2;
else current_state <= S1;

S2:  if (Xin == 1’b1) current_state <= S3;
else current_state <= S1;

S3: begin
Z <= 1’b1;
if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;
end

endcase
end

endmodule

Xin
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