
© 2018 BYU

ECEn 220

Fundamentals of Digital Systems

Chapter 23
SystemVerilog State Machines

© 2018 BYU

Components of an FSM

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

2

© 2018 BYU

Components of a FSM

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

1. State memory
• Flip-flops to hold the current state
• Sequential Logic

3

© 2018 BYU

Components of a FSM

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

1. State memory
• Flip-flops to hold the current state
• Sequential Logic

2. Input Forming Logic (IFL)
• Logic to determine the next state of the FSM
• Combinational Logic

4

© 2018 BYU

Components of a FSM

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

1. State memory
• Flip-flops to hold the current state
• Sequential Logic

2. Input Forming Logic (IFL)
• Logic to determine the next state of the FSM
• Combinational Logic

3. Output Forming Logic (OFL)
• Logic to determine FSM outputs
• Combinational logic

5

© 2018 BYU

SystemVerilog FSMs

ECEn 220

• SystemVerilog code is needed for each of the
three components of an FSM
– State FF code
– IFL code
– OFL code

6

© 2018 BYU

State Machine Coding Styles

ECEn 220 7

• One always_comb block for IFL and OFL and
one always_ff block for state register

• One always ff block for the state register
and IFL and the OFL is done using either
dataflow assign statements or an
always_comb block.

• Three separate blocks for the state register,
IFL, and ODL

© 2018 BYU

Moore Output

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

8

© 2018 BYU

A Sequence Detector

ECEn 220

typedef enum {s0, s1, s2, s3} StateType;
StateType ns, cs;

always_comb
begin

ns = cs; // default
Z = 0; // default

if (reset)
ns = s0;

else
case (cs)

s0: if (!Xin)
ns = s1;

s1: if (Xin)
ns = s2;

s2: if (Xin)
ns = s3;

else
ns = s1;

s3: Z = 1’b1; // Moore
endcase

end

always_ff @(posedge clk)
cs <= ns;

S2

S1S3

Xin�

Xin
Xin

Xin

Xin�

Xin�

Z

S0reset

9

Enumerate the states

© 2018 BYU

Moore Output

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

10

always_ff @(posedge clk)
cs <= ns;

always_comb
begin

end

© 2018 BYU 11

A Sequence Detector

S2

S1S3

Xin�

Xin
Xin

Xin

Xin�

Xin�

Z

S0reset

always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = s0;

else
case (cs)

s0: if (!Xin)
ns = s1;

s1: if (Xin)
ns = s2;

s2: if (Xin)
ns = s3;

else
ns = s1;

s3: Z = 1’b1;
endcase

end

Assign Z=(cs == S3) ? 1’b1 : 1’b0;

always_ff @(posedge clk)
cs <= ns;

Use dataflow for Moore output

© 2018 BYU 12

S2

S1Xin�

Xin

Xin

Xin

Xin�

Xin�

Z

S0

S3

Xin�

Xin

Xin

typedef enum {S0, S1, S2, S3} StateType;
StateType ns, cs;

always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = S0;

else
case (cs)

S0: if (!Xin) ns = S1;
S1: if (Xin) ns = S2;
S2: if (Xin) ns = S3;

else ns = S1;
S3: begin

Z = 1’b1;
if (!Xin) ns = S1;

else ns = S0;
end

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset

A Better Sequence
Detector

© 2018 BYU

State Transition and Output

ECEn 220 13

© 2018 BYU

A Car Wash FSM
typedef enum {sIdle, sToken, sSpray} StateType;
StateType ns, cs;

always_comb
begin

ns = cs;
clrt = 0;
spray = 0;

if (reset)
ns = sIdle;

else
case (cs)

sIdle: if (token) ns = sToken;
sToken: begin

clrt = 1;
ns = sSpray;

end
sSpray: begin

spray = 1;
if (tdone) ns = sIdle;

end
default: ns = sIdle;

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset

14

S_SPRAY

S_TOKEN

TOKEN

TOKEN�

CLRT

S_IDLE

TDONE�

TDONE

SPRAY

© 2018 BYU ECEn 220 15

State Transition and Output

© 2018 BYU

Mealy Output

ECEn 220

Outputs

D QD Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Inputs

16

© 2018 BYU ECEn 220 17

S2

S1

Xin

Xin / Z

Xin

Xin�

Xin�

S0
Xin�

Sequence
Detector with
Mealy Output

typedef enum {s0, s1, s2} stateType
stateType ns, cs;

always_comb
begin

ns = cs;
Z = 0;

if (reset)
ns = s0;

else
case (state)

s0: if (!Xin) ns = s1;
s1: if (Xin) ns = s2;
s2: if (Xin)

begin
ns = s0;
Z = 1; // Mealy output

end
else ns = s1;

endcase
end

always_ff @(posedge clk)
cs <= ns;

reset

© 2018 BYU

Defensive Coding
Style

18

S2

S1

Xin

Xin / Z

Xin

Xin�

Xin�

S0
Xin�

reset

typedef enum {s0, s1, s2, ERR=’X} stateType
stateType ns, cs;

always_comb
begin

ns = ERR;
Z = 0;

if (reset)
ns = s0;

else
case (state)

s0: if (!Xin) ns = s1;
else ns = s0;

s1: if (Xin) ns = s2;
else ns = s1;

s2: if (Xin)
begin

ns = s0;
Z = 1; // Mealy output

end
else ns = s1;

endcase
end

always_ff @(posedge clk)
cs <= ns;

© 2018 BYU ECEn 220 19

State Transition and Output

© 2018 BYU

Input Forming Logic

ECEn 220

• Both Combinational and
Sequential Logic

S2

S1Xin�

Xin

Xin

Xin

Xin�

Xin�

Z

S0

S3

Xin�

Xin

always_ff @(posedge clk)
case (current_state)

S0: if (Xin == 1’b0) current_state <= S1
S1: if (Xin == 1’b1) current_state <= S2
S2: if (Xin == 1’b1) current_state <= S3

else current_state <= S1;
S3: if (Xin == 1’b0) current_state <= S1

else current_state <= S0;
endcase

20

Xin

© 2018 BYU ECEn 220

CLK

Z

current
_state S0 S0 S1 S1 S2 S3 S1 S2

module sequence(
input logic clk,Xin,
output logic Z
);

typedef enum {S0, S1, S2, S3} StateType;
StateType next_state, current_state = S0;

always_ff @(posedge clk)
case (current_state)
S0: if (Xin == 1’b0) current_state <= S1;
S1: if (Xin == 1’b1) current_state <= S2;
S2: if (Xin == 1’b1) current_state <= S3;

else current_state <= S1;
S3: if (Xin == 1’b0) current_state <= S1;

else current_state <= S0;
endcase

assign Z = (current_state == S3);

endmodule

Xin

21

© 2018 BYU

Can IFL, State FFs, and OFL be
combined?

ECEn 220

always_ff @(posedge clk)
begin

Z <= 1’b0;
case (current_state)

S0:
if (Xin == 1’b0) current_state <= S1;

S1:
if (Xin == 1’b1) current_state <= S2;

S2:
if (Xin == 1’b1) current_state <= S3;
else current_state <= S1;

S3: begin
Z <= 1’b1;
if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;

end
endcase

end

Problem:

A FF will be generated for the ‘Z’ output

(all signals assigned in a clocked

always process will have an FF).

An FF on the output Z will cause the

signal to be delayed by one clock

cycle. The output will no longer be

asserted during the S3 state, but

during the following cycle.

22

© 2018 BYU ECEn 220

CLK

Z

current
_state S0 S0 S1 S1 S2 S3 S1 S2

module sequence(
input logic clk, Xin,
output logic Z
);

typedef enum {S0, S1, S2, S3} StateType;
StateType next_state, current_state = S0;

always_ff@(posedge clk) begin
Z <= 1’b0;
case (current_state)

S0: if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;

S1: if (Xin == 1’b1) current_state <= S2;
else current_state <= S1;

S2: if (Xin == 1’b1) current_state <= S3;
else current_state <= S1;

S3: begin
Z <= 1’b1;
if (Xin == 1’b0) current_state <= S1;
else current_state <= S0;
end

endcase
end

endmodule

Xin

23

