
Missile Command
ECEN 330

“Player” missile

“Enemy” missile

Plane “Plane” missile

Milestone 1: Missiles

Every missile is its own state machine!
• Keep track of the missile current state and other

properties in a struct

Tick function will accept a pointer to a missile struct:

void missile_tick(missile_t *missile);

Multiple different init functions depending on missile
type:
• missile_init_enemy(missile_t *missile,..)
• missile_init_player(missile_t *missile,..)
• missile_init_plane(missile_t *missile,..)
• missile_init_dead(missile_t *missile,..)

type
• Player, Enemy or Plane

• Green, Red or Blue

currentState
• You get to make your own state machine

for the missiles.
• I made states for:

• Initializing
• Moving
• Exploding Growing
• Exploding Shrinking
• Dead

Missile Properties (struct members)

x_origin
y_origin

x_dest
y_dest

x_current
y_current

total_length

length

- - -

radius

Initializing Enemy Missiles

void missile_init_enemy(missile_t *missile) {
missile->type = MISSILE_TYPE_ENEMY;

// Set x,y origin to random place near the top
// of the screen (top quarter? – you choose!)

// Set x,y destination to random location along
// the bottom of the screen

// Set current state
}

Initializing Player Missiles

void missile_init_player(missile_t *missile, uint16_t
x_dest, uint16_t y_dest) {

missile->type = MISSILE_TYPE_PLAYER;

// Set x,y origin to closest missile launch site

// x,y destination is provided (touched location)

// Set current state
}

Missile launch sites (not drawn)
3 sites spaced evenly on display

Initializing Plane Missile (M3)

void missile_init_plane(missile_t *missile, int16_t
plane_x, int16_t plane_y) {

missile->type = MISSILE_TYPE_PLANE;

// x,y origin provided (plane location)

// x,y destination chosen randomly along the bottom

// Set current state
}

You can assume this will never change

What should you do in your tick function?

If the missile is flying:
• Erase the old missile line
• Update length

• Calculate new current x,y
• Calculate percentage of path traveled:

• length / total_length

• Draw the new missile line

Ticking

x

origin

current

dest

x_current = x_origin + percentage * (x_dest – x_origin)

For all missile types, you need to initialize:
• length = 0
• explode_me = false
• total_length = 𝑦𝑦2 − 𝑦𝑦1 2 + 𝑥𝑥2 − 𝑥𝑥1 2 (Use sqrt function from <math.h>)
• x_current = x_origin
• y_current = y_origin
• impacted = false

• Probably best not to copy the same code to every init function, so you can:
• Create a helper function
• Or, do this in an INIT state of your state machine

Initializing other fields

What should you do in your tick function?

If the missile is exploding (increasing):
• Increase radius
• Draw circle

If the missile is exploding (decreasing):
• Erase circle
• Decrease radius
• Draw circle

Ticking

In this milestone you will use your missiles to implement a basic version of the game.

gameControl.c:
• init()
• tick()

Need to handle:
• Launching enemy missiles (automatically)
• Launching player missiles (when screen touched)
• Detecting “collisions” and triggering explosions

First check out main_m1.c. It provided a very basic game control.

Milestone 2: Game Control

Needs to keep an array of missile structs.
• You could use one big array, or separate arrays per type.

gameControl_init()
• Initialize all of your missiles

gameControl_tick()
• Tick all of your missiles
• If enemy missile is dead, relaunch it (call init again)
• If touchscreen touched, launch player missile (if one is available)
• Detect collisions

Game Control

• Any explosion type blows up enemy/plane missile
• Player missiles only explode when they reach their destination.

How to trigger an explosion?
• Set the explode_me struct member to true, and make sure your state machine checks this

while the missile is flying.

Detecting Collisions

Check if m1 is inside m2:

∆𝑦𝑦2 + ∆𝑥𝑥2 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2

m1

m2

∆𝑦𝑦

∆𝑥𝑥

You may not have enough time to tick all of your missiles!
• Take a while to draw/erase explosions.
• If lots of things are exploding you will miss interrupts and the game will slow down

What could you do?

Tick half of the missiles each gameControl_tick().
• If you are ticking half as often, make sure you move/resize objects twice as fast.

Tick Time Issues

Needs to keep an array of missile structs.
• You could use one big array, or separate arrays per type.

gameControl_init()
• Initialize all of your missiles

gameControl_tick()
• Tick HALF your missiles
• If enemy missile is dead, relaunch it (call init again)
• If touchscreen touched, launch player missile (if one is available)
• Detect collisions

Game Control

• Create a state machine for your plane
• Fly right to left
• Plane can be destroyed by an explosion (no explosion animation)
• Shoot a missile while flying
• Wait a while to reappear after leaving or being destroyed

Milestone 3: Plane + Stats

• Keep track of
1. Number of missiles shot by player

2. Number of enemy/plane missiles that impact the ground
• The impacted struct member can be used for this

• Set to true when impacted
• Set to false when you read it and update your stat counters

• Draw the stats at the top of the screen

Stats

gameControl_init()
• Initialize all of your missiles
• Initialize stats

gameControl_tick()
• Tick HALF of your missiles
• Tick plane
• If enemy missile is dead, relaunch it (call init again)
• If touchscreen touched, launch player missile (if one is available)
• Detect collisions
• Draw stats

Updated Game Control for M3

	Missile Command
	Slide Number 2
	Milestone 1: Missiles
	Missile Properties (struct members)
	Slide Number 5
	Slide Number 6
	Initializing Enemy Missiles
	Initializing Player Missiles
	Initializing Plane Missile (M3)
	Ticking
	Initializing other fields
	Ticking
	Milestone 2: Game Control
	Game Control
	Detecting Collisions
	Tick Time Issues
	Game Control
	Milestone 3: Plane + Stats
	Stats
	Updated Game Control for M3

