
C Programming Part 9:
Memory Segments
ECEN 330: Introduction to Embedded Programming

On a bare-metal system (ie no operating system), the memory is divided into
several segments.

In general, this consists of:
1. Program instructions

2. Globals

3. Stack

4. Heap

Memory

• Your C code is compiled into binary machine instructions.

• Like your variables, these instructions are loaded into memory.

• On some systems this is the same physical memory as the data.
• On some systems this is a separate (read-only) physical memory.

1. Program Instructions

What uses global memory space?
• Global variables, structs, arrays, etc
• Global const variables
• Read-only strings
• Static function variables

Allocation/Deallocation (Lifetime):
• Entire life of the program

Runtime Cost:
• Zero runtime (allocated when your program is compiled)

Size:
• Must be determined at runtime

2. Globals

What uses stack memory space?
• Local/automatic variables
• Function arguments

• Allocation/Deallocation (Lifetime):
• Allocated at function start, deallocated at function end

• Runtime Cost:
• Very small runtime (this is the overhead of calling a function, which is very small)

• Size:
• At compile time you have to decide what variables you need and their sizes for each

function (static)
• Only exception: Modern C allows local arrays to have variable size.

• Total stack size can’t be determined at compile time.
• Need to know which functions will be called, how deep recursion will go, etc.

3. Stack

“
Stack

What uses heap memory space?
• malloc() function returns a pointer to a chunk of heap memory of requested size.

• Allocation/Deallocation (Lifetime):
• Allocated dynamically (whenever user calls malloc)

• This can be done in functions, in loops, in if statements, etc.
• Allocated forever, until user calls free() with the same pointer.

• Runtime Cost:
• Small runtime cost, but larger than the stack

• malloc needs to find you a piece of memory large enough for your request
• free needs to return the memory to the pool, and “combine” it with neighboring free chunks
• Behind the scenes these functions keep a list of allocated and free chunks, their addresses and sizes.

• Size:
• Size not needed (and can’t be determined) at compile time. The program can dynamically

request as much or as little memory as it needs, and continuously free memory and request
more.

4. Heap

Comparison of Data Segments

Globals Stack Heap

Allocation/Deallocation Automatic Automatic Manual

Size Known at compile
time.

Not known at compile
time.

Not known at compile
time.

Ease of Use Easy Easy Requires more care.

Flexibility Fixed # of variables
and array sizes.

Fixed # of variables,
flexible array sizes.

Completely flexible
(supports advanced data
structures)

Speed 0 time Very small runtime Small runtime.

	C Programming Part 9:�Memory Segments
	Memory
	1. Program Instructions
	2. Globals
	3. Stack
	Slide Number 6
	Slide Number 7
	4. Heap
	Slide Number 9
	Comparison of Data Segments

