
C Programming Part 8:
Pointers II

ECEN 330: Introduction to Embedded Programming

Double Pointers

uint32_t x = 0;
uint32_t* p;
uint32_t** p2a;
uint32_t** p2b;

p = &x;
p2a = &p;
p2b = &(*p2a);

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

0x104

0x104

uint32_t**

uint32_t**

p2a

p2b

Rule: Dereference can only be done on pointer types
(Compiler will check this)

uint8_t x = 0xAB;
uint8_t* p = &x;
uint8_t** p2 = &p;

printf("%x\n", p);
printf("%x\n", *p);
printf("%x\n", **p);

printf("%x\n", p2);
printf("%x\n", *p2);
printf("%x\n", **p2);
printf("%x\n", ***p2);

x uint8_t0x100

0x104

0x108

0x10C

0x110

0xAB

0x100
uint8_t*p

0x104

uint8_t**p2

Pointers To Structs

We often have pointers to
structs.

To access struct members
you can dereference the
pointer (*) and access (.)

Or you can do both at
once with ->

struct point {
int x;
int y;

};

struct point s1 = {1,2};
struct point *p;

p = &s1;
(*p).x = 3;
p->y = 4;
printf("%d, %d\n", p->x, p->y);

So Why Use Pointers?

1. Change data in caller function
• Using this you can pass data back to caller (ie have multiple return values)

2. Passing large pieces of data to function
• In minimax, we passed the board by pointer

3. Enables many types of data structures (lists, trees)

	C Programming Part 8:�Pointers II
	Double Pointers
	Slide Number 3
	Pointers To Structs
	So Why Use Pointers?

