
C Programming Part 7:
Pointers I

ECEN 330: Introduction to Embedded Programming

Let’s back up…

uint32_t x = 0;
uint8_t y = 3;

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

3 uint8_ty

Every variable we
define has a value

Every variable we
define lives at an

address

Let's back up…

uint32_t x = 0;
uint8_t y = 3;

y = x + 5;

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

3 uint8_ty

We can read from a
variable to

get its value.
We can assign to a

variable to
update its value.

Pointers - &

uint32_t x = 0;
uint32_t* p;

p = &x;

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

We can use ‘&’ on a
variable to

get its address.
We can assign to a

variable to
update its value.

We can use ‘*’ to
declare pointers
(address types).

Pointers - *

uint32_t x = 0;
uint32_t* p;

p = &x;

*p = 13;

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

The * operator accesses the
value this address points to.

Pointers - *

uint32_t x = 0;
uint32_t* p;

p = &x;

*p = 13;
printf("%d\n", *p);

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

We can assign the
value this address points to.

We can read the
value this address points to.

uint32_t x = 0;
uint32_t* p;

p = &x;

*p = 13;
printf("%x\n", x);
printf("%x\n", &x);
printf("%x\n", p);
printf("%x\n", *p);
printf("%x\n", &p);

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

& and * are opposites

valueaddress

&x

Get address of variable/value

*p

Access (read/write) value at given address

int x;

x = 7;
*(&x) = 7;

These do the
same thing

uint32_t x = 0;
uint32_t* p;

p = &x;
*p = 13;

uint16_t* p2;
*p2 = 13;

uint8_t* p3 = 10;
*p3 = 13;

uint32_t p4 = NULL;

x uint32_t0x100

0x104

0x108

0x10C

0x110

0

0x100

uint32_t*p

Rule: Pointers should point to something valid or be NULL

p2
?

?
p3

? Invalid

0

p4

Pointers to Arrays
uint16_t A[5]={0,2,4,6,8};
uint16_t* p;
p = A;

A++;

p++;
p = p + 2;
(*p)++;

printf("%x\n", p);
printf("%x\n", *p);
printf("%x\n", A[3]);
printf("%x\n", p[1]);

A uint16_t0x100

0x104

0x108

0x10C

0x110

0

uint16_t*

2

4

6

8

A[0]

A[1]

A[2]

A[3]

A[4]

uint16_t

uint16_t

uint16_t

uint16_t

0x100

p

Pointers to Arrays

uint16_t A[5]={0,1,2,3,4};
uint16_t* p;
uint16_t* p2;

p = A;
p2 = &(A[0]);

(*p)++;
p2++;
(*(p+2))++;

printf("%d\n", p[2]);
printf("%d\n", *(p+2));
printf("%d\n", *(p2+1));

A uint16_t0x100

0x104

0x108

0x10C

0x110

0

uint16_t*

1

2

3

4

A[0]

A[1]

A[2]

A[3]

A[4]

uint16_t

uint16_t

uint16_t

uint16_t

0x100

0x100
uint16_t*

p

p2

So Why Use Pointers?

1. Change data in caller function
• Using this you can pass data back to caller (ie have multiple return values)

2. Passing large pieces of data to function
• In minimax, we passed the board by pointer

3. Enables many types of data structures (lists, trees)

	C Programming Part 7:�Pointers I
	Let’s back up…
	Let's back up…
	Pointers - &
	Pointers - *
	Pointers - *
	Slide Number 7
	& and * are opposites
	Slide Number 9
	Pointers to Arrays
	Pointers to Arrays
	So Why Use Pointers?

