

Let’s back up...

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

uint32 t x = 0;
uint8 t y = 3;

Every variable we
define lives at an
address

0x100 [

0x104

0x108

0x10C

0x110

uint32_t

uint8 t

Every variablewe
define has a value

Let's back up...

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

uint32 t x = 0;
uint8 t y = 3;

y = X + 5;
\

AN

AN

We can read from a
variableto
get its value.

We can assign to a
variableto
update its value.

0x100 [

0x104

0x108

0x10C

0x110

| uint32_t

uint8 t

BYU Electrical & Computer

Pointers - & Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

X 0x100 || | uint32_t
0
uint32 t x = 0; D ox104 uint32_t*
uint32_t*& | 0x100
(k7
D = &X; We can use. to Ox108 | ___ |
declare pointers
‘ \ (addresstypes). |

\ oxtoc [

We can use ‘& on a
| variableto | L__________
get its address.
We can assign to a Ox110
variableto
update its value.

Pointers - *

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

uint32 t x = 0;
uint32 t* p;

p = &X;

*

= 13;

P
\

\ The * operator accesses the
value this address points to.

0x100 |

0x104 |

0x108

0x10C

0x110

0x100

uint32 t

uint32_t*

BYU Electrical & Computer

Pointexs - * Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

X 0x100 | | uint32_t

uint32 t x = 0; -
uint32 t* p;

p Ox104 uint32_t*

0x100
p = &X;
Oxi08 | |
*p=13, 40 |
printf("%d\n", *E); oxtoc [|
We can assign the 0x110

value this address pointsto. . . | 7T b]
P We can read the

value this address points to.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

uint32 t x = 0;
uint32 t* p;

p = &X;

*p = 13;

printf("%x\n",
printf("%x\n",
printf("%x\n",
printf("%x\n",
printf("%x\n",

X);
&x) ;
pP);
*p);
&p) ;

0x100 |

0x104 |
1 0x100 j

0x108

0x10C

0x110

uint32_t

uint32_t*

BYU Electrical & Computer

- Engineerin
& and * are OPPOSIteS IRAEFULTONCDEEGEOFENGINEERING

int x;

Get address of variable/value X = 7;

&X *(&x) = 7;

1 ‘ These do the
thi
address value >ame thing
*p

Access (read/write) value at given address

Rule: Pointers should point to something valid or be NULL BYU Electrical & Computer

Engineering
uint32 t x = 0;

IRA A. FULTON COLLEGE OF ENGINEERING

uint32_t* p; X 0x100 | uint32_t
P = 8X; p int32_t*
*p = 13;
uintl6_t* p2; P2 0x108 |
| ? 1
*p2 = 13; | L, >
p3 0x10C |
int8 t* p3 = 10; - |
» N ’ | : L Invalid
*p3 = 13;
P4 0x110 |
0
uint32 t p4 = NULL;

BYU Electrical & Computer

. Encinecri
Po lnters to Arrays IR?E:EI?I‘S::)?)EEGE OF ENGINEERING

uintl6 t A[5]={0,2,4,6,8}; A —» A[0] OX100] e
uintlée_t* p; -
p = A; AlL] 2 luinti6 t

Al2] 0x104 4 | uintie t
A++;

A[3] 6 l uint16 t
p++; A[4] 0x108 8 l uintl6e_t
p=p + 2
*e)++; 0]

P 0x10C | uintle t*
printf("%x\n", p); 0x100
printf("%x\n", *p); 0110
printf("%x\n", A[3]); | [T
printf("%x\n", p[21); |]

Pointers to Arrays

uintle t A[5]={0,1,2,3,4};
uintle t* p;
uintlé t* p2;

p = A;
p2 = &(A[9]);

(*p)++;
p2++;

(*(p+2))++;

printf("%d\n", p[2]);
printf("%d\n", *(p+2));
printf("%d\n", *(p2+1));

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

A —> A[0] 0x100

0)
A[1] 1
Al 2] Ox104 2
A[3] 3
A[4] 0x108 4
P 0x10C
0x100
D2 0x110
0x100

uintle t
uint16 t
uintl6e t
uint16 t

uint16_t

uintlé t*

uintl6 t*

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

S0 Why Use Pointers? Engineering

1. Change data in caller function
» Using this you can pass data back to caller (ie have multiple return values)

2. Passing large pieces of data to function
* In minimax, we passed the board by pointer

3. Enables many types of data structures (lists, trees)

	C Programming Part 7:�Pointers I
	Let’s back up…
	Let's back up…
	Pointers - &
	Pointers - *
	Pointers - *
	Slide Number 7
	& and * are opposites
	Slide Number 9
	Pointers to Arrays
	Pointers to Arrays
	So Why Use Pointers?

