
C Programming Part 6:
C Compilation

ECEN 330: Introduction to Embedded Programming

1. You’ll need to compile C programs, so you need to understand these steps

2. It will make you a faster debugger.
• If you understand why the compiler is giving you a certain error message, you can likely figure

out why to fix your code much faster.

3. Understand why C is organized the way it is:
• Why do we have header files?
• Why do we have function prototypes (forward declarations)?
• What should I put in my .h file versus my .c file?

Why should you learn about the C
compilation process?

You may have compiled multiple files together like this:

gcc myFile1.c myFile2.c myFile3.c

This gives can sometimes mislead new C programmers into believing C files are compiled in unison.

In reality, every C file is compiled separately, and then “linked” together.

No “real” software projects are compiled using a single gcc command like above. Why?

• Each C file is compiled separately
to generate an object (.o) file

• These files are then linked
together, along with system
libraries, to create an executable.

• It can be confusing because we
use “gcc” to run both the compiler
and the linker.

• This is actually a helper program
that determines which tool to use
based on the input files.

• Compiler (cc)
• Linker (ldd)

Compiler & Linker

Linker

myExecutable

myFile1.c

Compiler

myFile1.o

myFile2.c

Compiler

myFile2.o

myFile2.c

Compiler

myFile2.o
System
libraries
(.o, .so)

gcc –c myFile1.c

gcc myFile1.o myFile2.o myFile3.o –o myExecutable

• The compiler takes human-readable C code,
and translates it into object byte code.

• These are computer instructions encoded
into binary, specific to the type of processor
you are using.

• The byte code is incomplete, as it doesn’t
include code from the other files in your
program yet.

• Example: If you call printf inside myFile1.c
the object file will have a symbolic reference
to the function, but it won’t know where it is
yet.

C Compiler

myFile1.c

Compiler

myFile1.o

• The compilation step is actually
made up of several sub-steps

• It’s not common to run these
partial steps

• Usually you just compile .c files
into .o files

• But we will look inside the
intermediate steps to see what
it looks like

Breaking down Compilation

myFile1.c

Compiler

myFile1.o

myFile1.c

Preprocessor

Compiler

Assembler

myFile1.o

Linker

myExecutable

myFile1.c

Preprocessor

Compiler

Assembler

myFile1.o

myFile2.c

Preprocessor

Compiler

Assembler

myFile2.o

myFile2.c

Preprocessor

Compiler

Assembler

myFile2.o

gcc myFile1.o myFile2.o myFile3.o –o myExecutable

System
libraries
(.o, .so)

gcc –c myFile.c

Each C File is compiled:
• From start to finish in one pass

• Without any knowledge of what is in other C files

Why?
• You can compile big projects fast
• Multiple files can be compiled at the same time.

So how do you know what is available in other files?
• Header files provide declarations of:

• Functions
• Global variables
• Types, Strcuts, etc.

C Compilation

Linker

myExecutable

myFile1.c

Preprocessor

Compiler

Assembler

myFile1.o

myFile2.c

Preprocessor

Compiler

Assembler

myFile2.o

myFile2.c

Preprocessor

Compiler

Assembler

myFile2.o

gcc myFile1.o myFile2.o myFile3.o –o myExecutable

System
libraries
(.o, .so)

gcc –c myFile.c

• The linker stitches together the different object files.

• It replaces symbolic references from object files to the actual location of where a function,
variable, etc. resides in another object file.

• The byte code is combined together into a single executable.

• The linker will throw an error if:
1. It can’t find a definition for something you have referenced

• “undefined reference to ______________”
2. There are too many (multiple) definitions for something you have referenced

• “multiple definition of _____________”

Linker

• If you see the linker error “undefined reference to ______________”
• A function you are calling is missing from another file (maybe a typo?)
• You forgot to compile the file that has that function?

• If you see the linker error “multiple definition of _____________”
• You’ve declared the same function or global variable name in multiple files.
• Either change one name, or use static.

• Other errors are compiler errors and usually mean the problem is contained to the .c file in
question (or any .h files it #includes)

• If you see “implicit function” warning you know that shouldn’t be ignored, and you are
missing a function prototype, either:

• At the top of your .c file for functions in the same file
• In a .h file for functions in other files

How does this help you debug?

	C Programming Part 6:�C Compilation
	Why should you learn about the C compilation process?
	Slide Number 3
	Compiler & Linker
	C Compiler
	Breaking down Compilation
	Slide Number 7
	C Compilation
	Slide Number 9
	Linker
	How does this help you debug?

