
C Programming Part 6:
C Compilation

ECEN 330: Introduction to Embedded Programming



1. You’ll need to compile C programs, so you need to understand these steps

2. It will make you a faster debugger. 
• If you understand why the compiler is giving you a certain error message, you can likely figure 

out why to fix your code much faster.

3. Understand why C is organized the way it is:
• Why do we have header files?
• Why do we have function prototypes (forward declarations)?
• What should I put in my .h file versus my .c file?

Why should you learn about the C 
compilation process?



You may have compiled multiple files together like this:

gcc myFile1.c myFile2.c myFile3.c

This gives can sometimes mislead new C programmers into believing C files are compiled in unison. 

In reality, every C file is compiled separately, and then “linked” together.

No “real” software projects are compiled using a single gcc command like above.  Why?



• Each C file is compiled separately 
to generate an object (.o) file

• These files are then linked 
together, along with system 
libraries, to create an executable.

• It can be confusing because we 
use “gcc” to run both the compiler
and the linker.  

• This is actually a helper program 
that determines which tool to use 
based on the input files.

• Compiler (cc)
• Linker (ldd)
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• The compiler takes human-readable C code, 
and translates it into object byte code.  

• These are computer instructions encoded
into binary, specific to the type of processor 
you are using.

• The byte code is incomplete, as it doesn’t 
include code from the other files in your 
program yet.

• Example: If you call printf inside myFile1.c 
the object file will have a symbolic reference 
to the function, but it won’t know where it is 
yet.
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• The compilation step is actually 
made up of several sub-steps

• It’s not common to run these 
partial steps

• Usually you just compile .c files 
into .o files

• But we will look inside the 
intermediate steps to see what 
it looks like
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Each C File is compiled:
• From start to finish in one pass

• Without any knowledge of what is in other C files

Why?
• You can compile big projects fast
• Multiple files can be compiled at the same time.

So how do you know what is available in other files?
• Header files provide declarations of:

• Functions
• Global variables
• Types, Strcuts, etc.

C Compilation
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• The linker stitches together the different object files.

• It replaces symbolic references from object files to the actual location of where a function, 
variable, etc. resides in another object file.

• The byte code is combined together into a single executable.

• The linker will throw an error if:
1. It can’t find a definition for something you have referenced

• “undefined reference to ______________”
2. There are too many (multiple) definitions for something you have referenced

• “multiple definition of _____________”

Linker



• If you see the linker error “undefined reference to ______________” 
• A function you are calling is missing from another file (maybe a typo?)
• You forgot to compile the file that has that function?

• If you see the linker error “multiple definition of _____________”
• You’ve declared the same function or global variable name in multiple files.
• Either change one name, or use static.

• Other errors are compiler errors and usually mean the problem is contained to the .c file in 
question (or any .h files it #includes)

• If you see “implicit function” warning you know that shouldn’t be ignored, and you are 
missing a function prototype, either:

• At the top of your .c file for functions in the same file
• In a .h file for functions in other files

How does this help you debug?
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