
C Programming Part 5:
Functions & Control Flow

ECEN 330: Introduction to Embedded Programming

Basics of Functions

• Each function definition has the form
return-type function-name(argument declarations)
{

declarations and statements
}

• Minimal function
dummy() {} // int return type is assumed when omitted

• The return statement is used to return a value from a function
return expression; // converted to the return type if needed
return; // omit expression if return type is void

• The calling function is free to ignore the returned value

Functions Returning Non-integers

• Must declare the return type if it is not int
/* atof: convert string s to double */
double atof(char s[])
{

double val, power;
int i, sign;
...
return sign * val / power;

}

• Caller must know that a function returns non-int value
double atof(char []); // declaration

What happens if a separate file uses atof without a declaration?

Statements and Blocks

• An expression becomes a statement when it is followed by a semicolon
x = 0;
i++;
printf(...);

• Braces { and } are used to group declarations and statements together into a compound
statement, or block
void foo(char s[], char t[])
{

int i, j;
i = strlen(s); j = 0;
while (s[i++] = t[j++]) ;
s[i] = '\0';

}

If-Else

• The if-else statement is used to express decisions
if (expression) The expression is evaluated first

statement1 Executed if expression is non-zero
else The else part is optional

statement2 Executed if expression is zero

• Ambiguity may result with a nested if sequence
if (n > 0)

if (a > b)
z = a;

else
z = b;

Which if is the else associated with?
The closest previous else-less if

Else-If

• The else-if is useful for multi-way decisions
if (expression)

statement
else if (expression)

statement
else if (expression)

statement
else if (expression)

statement
else

statement

A statement can be a block with braces

The expressions are evaluated in order

If an expression is true, the associated
statement is executed

Switch

• The switch statement is a multi-way decision that tests whether an expression matches
one of a number of constant integer values, and branches accordingly.

switch (expression) {
case const-expr:

statements
case const-expr:

statements
default:

statements
}

• What happens if a case does not end with a break?
• What happens if there is no default and no cases satisfied?
• Does the order of the cases matter (including default)?

The break statement causes an
immediate exit from the switch

The default label is executed if none of the
other cases are satisfied

Loops – While and For

• The while statement
while (expression)

statement

• The for statement
for (expr1; expr2; expr3)

statement

• is equivalent to
expr1;
while (expr2) {

statement
expr3;

}

Any expression can be omitted
for (;;) {

... // infinite loop
}

The advantage is centralized loop control

The comma operator (,) is useful in for
loops
for (i = 0, j = strlen(s)-1; i < j; i++, j--) {

...
}

Tests the termination condition at the top

Loops – Do-While

• The syntax of the do is
do

statement
while (expression);

• Example
do {

c = getchar();
} while (c == ' ');

Tests the termination condition at the bottom after
each pass through the loop body

The body is always executed at least once

When the expression becomes false,
the loop terminates

The statement is executed,
then expression is evaluated

Break

• A break causes the innermost enclosing loop or switch to be exited immediately

/* trim: remove trailing space */
int trim(char s[])
{

int n;
for (n = strlen(s)-1; n >= 0; n--)

if (s[n] != ' ')
break;

s[n+1] = '\0';
return n;

}

Continue

• A continue causes the next iteration of the enclosing loop to begin

for (i = 0; i < n; i++) {
if (a[i] < 0) /* skip negative elements */

continue;
/* do positive elements */
...

}

Goto and Labels

• Jump immediately to the label
int foo(...)
{

for (...)
for (...) {

...
if (disaster)

goto error;
}

...
error:

/* clean up the mess */
}

Useful to abandon processing in some
deeply nested structure

A label is followed by a colon and can be
attached to any statement in the same
function as the goto

	C Programming Part 5:�Functions & Control Flow
	Basics of Functions
	Functions Returning Non-integers
	Statements and Blocks
	If-Else
	Else-If
	Switch
	Loops – While and For
	Loops – Do-While
	Break
	Continue
	Goto and Labels

