
C Programming Part 4:
Arrays, Strings, Sructs

ECEN 330: Introduction to Embedded Programming



• C arrays are declared in the following form:
type name[number of elements];

• For example, if we want an array of six integers :
int numbers[6];

C Arrays



In C, arrays are always stored in contiguous memory 

Memory

uint8_t vals [3] int16_t vals [3] uint32_t vals [3]



sizeof() returns the size of the array in bytes:

sizeof()

uint8_t vals [3] int16_t vals [3] uint32_t vals [3]

sizeof(vals) is 3 sizeof(vals) is 6 sizeof(vals) is 12



Initializers

uint8_t vals [4] = {1, 2, 3, 10};
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uint8_t vals [] = {1, 2, 3, 10};
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uint8_t vals [6] = {13};
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• Access using [ ] 

Accessing

uint8_t point [4] = {1, 2, 3, 10};
int x;
x = point[2];

• There is no checking to make sure the index is within the array:



2D Arrays



• There is no string data type in C
• Strings are arrays of 1 byte ASCII values, ended with a 0 (null terminator).
• String constants inside " ", implicitly include the null terminator.

Strings

char s[3] = "hi";

‘h’
‘i’

‘\0’

104
105
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char s[6] = "hi";

‘h’
‘i’
0
0
0
0

What is sizeof(s)?

What is strlen(s)?



• Is this a string?

Strings

char s[5] = "hello";

‘h’
‘e’
‘l’
‘l’
‘o’

• What will this print?

printf("%d\n", strlen(s));

printf("%s\n", s);

• What will this print?



structs



Basics of Structures

• A structure is a collection of one or more variables
• Structures help to organize complicated data
• Related variables can be treated as a unit
• The keyword struct introduces a structure declaration

struct point {
int x;
int y;

}; /* reserves no storage */

• Variables may follow after right brace
struct point { ... } a, b, c; /* space reserved */

structure tag
(optional)

members



Basics of Structures

• If a structure is tagged, it can be used later in definitions
struct point pt;

• A structure can be initialized with a list of initializers
struct point maxpt = { 320, 200 };

• A structure member is referred to with a “dot” operator
structure_name.member

printf("%d,%d\n", pt.x, pt.y);
if (pt.x > maxpt.x) …

Defines a variable pt which is a structure of type struct point

One for each member



Basics of Structures

• Structures can be nested, consider a pair of points

struct rect {
struct point pt1;
struct point pt2;

};

• Declare block as rect structure
struct rect block;

• Refer to the x coordinate of the pt1 member of block
block.pt1.x



Structures and Functions

• Legal operations on a structure
• Copying it or assigning to it as a unit
• Accessing its members
• Taking its address with &

• Structures may not be compared

• Three approaches to passing data
• Pass components separately
• Pass an entire structure
• Pass a pointer to a structure (we won’t cover this until we go over pointers)

Includes function arguments and 
function return values



Pass Components Separately

• Take two integers and return a point structure
/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}

• makepoint can be used in place of a struct variable
struct rect block; /* define block */
block.pt1 = makepoint(0, 0); /* initialize pt1 */
block.pt2 = makepoint(XMAX, YMAX); /* init pt2 */

No conflict between the argument 
name and the member with the 
same name



Pass an Entire Structure

• Both the arguments and the return value are structures
/* addpoints: add two points */
struct point addpoint(struct point p1, struct point p2)
{

p1.x += p2.x;
p1.y += p2.y;
return p1;

}

• Add two points
struct point p1, p2, ptsum;
…
ptsum = addpoint(p1, p2);

Increment the components in p1 (a copy) 
rather than make another temporary 
variable

Passed by value



Typedef

• C provides typedef for creating new data type names
typedef int length_t;

• length_t can now be used the same way as int
length_t len, maxlen;
length_t lengths[];

• Main reasons for using typedef
• Parameterize a program against portability problems

• If many variables use the same type, we can change it in the future by only changing one place.

• Provide better documentation / readability

typedef char status_t;
typedef int16_t minimax_score_t;

New type name 

_t is a convention used to indicate a type



Struct with Typedef

typedef struct point {
int x;
int y;

} point_t ;

struct point {
int x;
int y;

};
struct point p1;
p1.x = 5;
p1.y = 6;

Notice that we had to type “struct point”
- Programmers are lazy

struct point {
int x;
int y;

};
typedef struct point point_t;

point_t p1;

typedef struct {
int x;
int y;

} point_t ;

OR

OR



typedef struct point {
int x;
int y;

} point_t ;

struct point {
int x;
int y;

};
typedef struct point point_t;

point_t p1;
typedef struct {

int x;
int y;

} point_t ;

It’s okay to have the typdef name match the struct name… 

typedef struct point {
int x;
int y;

} point ;

struct point {
int x;
int y;

};
typedef struct point point;

point p1;
struct point p2;

typedef struct {
int x;
int y;

} point ;



struct point {
int x;
int y;

} myPoint;

typedef struct {
int x;
int y;

} point_t;

This defines a variable variable myPoint
(and allocates memory) 

myPoint.x = 0;
myPoint.y = 13;

This defines a new type point_t
(point_t isn’t a variable)

point_t myPoint;

myPoint.x = 0;
myPoint.y = 13;

Watch out!  …These are very different
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