
C Programming Part 4:
Arrays, Strings, Sructs

ECEN 330: Introduction to Embedded Programming

• C arrays are declared in the following form:
type name[number of elements];

• For example, if we want an array of six integers :
int numbers[6];

C Arrays

In C, arrays are always stored in contiguous memory

Memory

uint8_t vals [3] int16_t vals [3] uint32_t vals [3]

sizeof() returns the size of the array in bytes:

sizeof()

uint8_t vals [3] int16_t vals [3] uint32_t vals [3]

sizeof(vals) is 3 sizeof(vals) is 6 sizeof(vals) is 12

Initializers

uint8_t vals [4] = {1, 2, 3, 10};

1
2
3

10

uint8_t vals [] = {1, 2, 3, 10};

1
2
3

10

uint8_t vals [6] = {13};

13
0
0
0
0
0

• Access using []

Accessing

uint8_t point [4] = {1, 2, 3, 10};
int x;
x = point[2];

• There is no checking to make sure the index is within the array:

2D Arrays

• There is no string data type in C
• Strings are arrays of 1 byte ASCII values, ended with a 0 (null terminator).
• String constants inside " ", implicitly include the null terminator.

Strings

char s[3] = "hi";

‘h’
‘i’

‘\0’

104
105

0

char s[6] = "hi";

‘h’
‘i’
0
0
0
0

What is sizeof(s)?

What is strlen(s)?

• Is this a string?

Strings

char s[5] = "hello";

‘h’
‘e’
‘l’
‘l’
‘o’

• What will this print?

printf("%d\n", strlen(s));

printf("%s\n", s);

• What will this print?

structs

Basics of Structures

• A structure is a collection of one or more variables
• Structures help to organize complicated data
• Related variables can be treated as a unit
• The keyword struct introduces a structure declaration

struct point {
int x;
int y;

}; /* reserves no storage */

• Variables may follow after right brace
struct point { ... } a, b, c; /* space reserved */

structure tag
(optional)

members

Basics of Structures

• If a structure is tagged, it can be used later in definitions
struct point pt;

• A structure can be initialized with a list of initializers
struct point maxpt = { 320, 200 };

• A structure member is referred to with a “dot” operator
structure_name.member

printf("%d,%d\n", pt.x, pt.y);
if (pt.x > maxpt.x) …

Defines a variable pt which is a structure of type struct point

One for each member

Basics of Structures

• Structures can be nested, consider a pair of points

struct rect {
struct point pt1;
struct point pt2;

};

• Declare block as rect structure
struct rect block;

• Refer to the x coordinate of the pt1 member of block
block.pt1.x

Structures and Functions

• Legal operations on a structure
• Copying it or assigning to it as a unit
• Accessing its members
• Taking its address with &

• Structures may not be compared

• Three approaches to passing data
• Pass components separately
• Pass an entire structure
• Pass a pointer to a structure (we won’t cover this until we go over pointers)

Includes function arguments and
function return values

Pass Components Separately

• Take two integers and return a point structure
/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}

• makepoint can be used in place of a struct variable
struct rect block; /* define block */
block.pt1 = makepoint(0, 0); /* initialize pt1 */
block.pt2 = makepoint(XMAX, YMAX); /* init pt2 */

No conflict between the argument
name and the member with the
same name

Pass an Entire Structure

• Both the arguments and the return value are structures
/* addpoints: add two points */
struct point addpoint(struct point p1, struct point p2)
{

p1.x += p2.x;
p1.y += p2.y;
return p1;

}

• Add two points
struct point p1, p2, ptsum;
…
ptsum = addpoint(p1, p2);

Increment the components in p1 (a copy)
rather than make another temporary
variable

Passed by value

Typedef

• C provides typedef for creating new data type names
typedef int length_t;

• length_t can now be used the same way as int
length_t len, maxlen;
length_t lengths[];

• Main reasons for using typedef
• Parameterize a program against portability problems

• If many variables use the same type, we can change it in the future by only changing one place.

• Provide better documentation / readability

typedef char status_t;
typedef int16_t minimax_score_t;

New type name

_t is a convention used to indicate a type

Struct with Typedef

typedef struct point {
int x;
int y;

} point_t ;

struct point {
int x;
int y;

};
struct point p1;
p1.x = 5;
p1.y = 6;

Notice that we had to type “struct point”
- Programmers are lazy

struct point {
int x;
int y;

};
typedef struct point point_t;

point_t p1;

typedef struct {
int x;
int y;

} point_t ;

OR

OR

typedef struct point {
int x;
int y;

} point_t ;

struct point {
int x;
int y;

};
typedef struct point point_t;

point_t p1;
typedef struct {

int x;
int y;

} point_t ;

It’s okay to have the typdef name match the struct name…

typedef struct point {
int x;
int y;

} point ;

struct point {
int x;
int y;

};
typedef struct point point;

point p1;
struct point p2;

typedef struct {
int x;
int y;

} point ;

struct point {
int x;
int y;

} myPoint;

typedef struct {
int x;
int y;

} point_t;

This defines a variable variable myPoint
(and allocates memory)

myPoint.x = 0;
myPoint.y = 13;

This defines a new type point_t
(point_t isn’t a variable)

point_t myPoint;

myPoint.x = 0;
myPoint.y = 13;

Watch out! …These are very different

	C Programming Part 4:�Arrays, Strings, Sructs
	C Arrays
	Memory
	sizeof()
	Initializers
	Accessing
	2D Arrays
	Strings
	 Strings
	structs
	Basics of Structures
	Basics of Structures
	Basics of Structures
	Structures and Functions
	Pass Components Separately
	Pass an Entire Structure
	Typedef
	Struct with Typedef
	Slide Number 20
	Watch out! …These are very different

