
C Programming Part 3:
I/O, Operators

ECEN 330: Introduction to Embedded Programming



Basic printf Conversion Specification

• Begin with % and end with a conversion character
• Between the % and conversion character, in order

• Flags
• -, left adjustment
• 0, padding with leading zeros

• Field width
• number, minimum number of characters, pad if necessary

• Period
• Separates field width from the precision

• Precision
• number, maximum number of characters to be printed from a string, integer, or after a decimal point in 

a float
• *, take value from next argument

• Type modifier
• h, for short argument
• l, (letter ell) for long argument

printf("count:%5.3ld\n", cnt); 



Basic printf Conversions

Character Argument type; Printed As

d,i int; decimal number

o int; unsigned octal number (without a leading zero)

x,X int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or ABCDEF
for 10, ...,15.

u int; unsigned decimal number

c int; single character

s char *; print characters from the string until a '\0' or the number of characters given by 
the precision.

f double; [-]m.dddddd, where the number of d's is given by the precision (default 6).

e,E double; [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where the number of d's is given by the 
precision (default 6).

g,G double; use %e or %E if the exponent is less than -4 or greater than or equal to the precision; 
otherwise use %f. Trailing zeros and a trailing decimal point are not printed.

p void *; pointer (implementation-dependent representation).



String printf Examples

:%s: :hello, world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
:%-15s: :hello, world   :
:%15.10s: :     hello, wor:
:%-15.10s: :hello, wor :

printf("%s", "hello, world"); // first example

12 
characters

Colons around fields to see the 
extent

Format 
string



• Because printf can accept any types of arguments, it does not do any automatic 
casting of type for the arguments.

• Make sure you provide the correct type for your format specifier:

printf(“My string: %s\n”, “hello there”); 

printf(“My char: %c\n”, ‘y’); 

printf(“My char: %c\n”, 121);

printf(“My int: %d\n”, 121);

Printf Types



Basic scanf Conversion Specification

• Ordinary characters expected to match input stream
• Begin with % and end with a conversion character
• Between the % and conversion character, in order

• Flags
• *, assignment suppression

• Field width
• number, maximum number of characters

• Type modifier
• h, for short argument
• l, (letter ell) for long or double argument

scanf("count:%5ld\n", &cnt); 



Basic scanf Conversions

Character Input Data; Argument Type

d decimal number; int *

i integer; int *. The integer may be in octal (leading 0) or hex (leading 0x or 0X).

o octal integer (with or without leading zero); int *

u unsigned decimal integer; unsigned int *

x hexadecimal integer (with or without leading 0x or 0X); int *

c characters; char *. The next input characters (default 1) are placed at the indicated spot. The 
normal skip-over white space is suppressed; to read the next non-white space character, use 
%1s

s character string (not quoted); char *, pointing to an array of characters long enough for the 
string and a terminating '\0' that will be added.

e,f,g floating-point number with optional sign, optional decimal point and optional exponent; 
float *



Basic scanf Example

• Suppose we want to read
25 Dec 1988

• The scanf statement is
int day, year;
char monthname[20];

scanf("%d %s %d", &day, monthname, &year);

• No & is used with monthname, since an array name is a pointer.



Arithmetic Operators

• Binary arithmetic operators
+ - * / % (higher precedence)

• Unary arithmetic operators (higher precedence)
+ -

• Integer division truncates any fractional part
• The % operator cannot be applied to a float or double



Relational and Logical Operators

• Relational operators
> >= < <=

• Equality operators (lower precedence)
== !=

• Logical operators (evaluated left to right)
&& ||

• Evaluation stops as soon as the truth or falsehood of the result is known
i < lim-1 && (c=getchar()) != '\n'
x || ++y

• Unary negation operator
!
if (!valid)… same as   if (valid == 0)…

RH side may not be 
evaluated.
Important when side 
effects are involved.



Type Conversion

• For binary operators with operands of different types
• “lower” type is promoted to “higher” type before operation
• (lower) int → long → float → double (higher)
• (lower) unsigned → signed (higher)

float r, f; int i;
r = i * f; /* i is converted to a float first */

• Across assignments
• Value on the right is converted to type on the left
• May involve extension, rounding or truncation

d = i; /* double d; int i; */

• When arguments are passed to functions
r = sqrt(2); /* integer 2 is converted to double 2.0 */

• In an expression with a cast, (type name) expression
(double)ticks/TICKS_PER_SECOND /* ticks is a long */

See K&R 
Appendix 
A.6 for 
details



Increment and Decrement Operators

• ++ adds 1 to its operand
• -- subtracts 1 from its operand

• May be used as a prefix (++n) or postfix (n++) operator
• ++n increments n before its value is used
• n++ increments n after its value has been used

If n is 5, then
x = n++; /* sets x to 5 */
x = ++n; /* sets x to 6 */
In both cases, n becomes 6

• Useful when indexing arrays in a loop
while ((s[i++] = t[j++])) ; /* copy string t */



Bitwise Operators

• May only be applied to integral operands
char, short, int, and long

• Mask off selective bits
/* set lowest 3 bits to 0 */
n = n & ~0x07;

• Turn bits on
/* set lowest 3 bits to 1 */
n = n | 0x07;

• Shift bits
n = n << 2; /* shift bits in n 2 positions left */
n = n >> x; /* fills with zeros if n unsigned */

O
p Function

& Bitwise 
AND

| Bitwise OR

^ Bitwise 
XOR

~ Bitwise 
NOT

<< Left shift

>> Right shift



Assignment Operators and Expressions

• The operator += is called an assignment operator
i += 2; /* increment i by 2, same as i = i + 2; */
yypv[p3+p4] += 3; /* left side only evaluated once */
x *= y + 1; /* means x = x * (y + 1); */

• Most binary operators have a corresponding assignment operator op=, where op is:
+ - * / % << >> & ^ |

• If expr1 and expr2 are expressions, then
expr1 op= expr2

is equivalent to
expr1 = (expr1) op (expr2)
except expr1 is computed only once



Conditional Expressions

• A conditional expression is written with the ternary operator
expr1 ? expr2 : expr3

The expression expr1 is evaluated first
If it is non-zero, expr2 is evaluated
Otherwise expr3 is evaluated

• Set z to the maximum of a and b
z = (a > b) ? a : b;

• Note that the conditional expression is indeed an expression and can be used where 
other expressions are used



Operator Precedence

Operators Associativity

() [] -> . left to right

! ~ ++ -- + - * (type) sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

Unary & +, -, and * have 
higher precedence than the 
binary forms.

if (x & MASK == 0) ...

Evaluated first

x = y += z = w;

Evaluated first
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