
C Programming Part 3:
I/O, Operators

ECEN 330: Introduction to Embedded Programming



Basic printf Conversion Specification

• Begin with % and end with a conversion character
• Between the % and conversion character, in order

• Flags
• -, left adjustment
• 0, padding with leading zeros

• Field width
• number, minimum number of characters, pad if necessary

• Period
• Separates field width from the precision

• Precision
• number, maximum number of characters to be printed from a string, integer, or after a decimal point in 

a float
• *, take value from next argument

• Type modifier
• h, for short argument
• l, (letter ell) for long argument

printf("count:%5.3ld\n", cnt); 



Basic printf Conversions

Character Argument type; Printed As

d,i int; decimal number

o int; unsigned octal number (without a leading zero)

x,X int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or ABCDEF
for 10, ...,15.

u int; unsigned decimal number

c int; single character

s char *; print characters from the string until a '\0' or the number of characters given by 
the precision.

f double; [-]m.dddddd, where the number of d's is given by the precision (default 6).

e,E double; [-]m.dddddde+/-xx or [-]m.ddddddE+/-xx, where the number of d's is given by the 
precision (default 6).

g,G double; use %e or %E if the exponent is less than -4 or greater than or equal to the precision; 
otherwise use %f. Trailing zeros and a trailing decimal point are not printed.

p void *; pointer (implementation-dependent representation).



String printf Examples

:%s: :hello, world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
:%-15s: :hello, world   :
:%15.10s: :     hello, wor:
:%-15.10s: :hello, wor :

printf("%s", "hello, world"); // first example

12 
characters

Colons around fields to see the 
extent

Format 
string



• Because printf can accept any types of arguments, it does not do any automatic 
casting of type for the arguments.

• Make sure you provide the correct type for your format specifier:

printf(“My string: %s\n”, “hello there”); 

printf(“My char: %c\n”, ‘y’); 

printf(“My char: %c\n”, 121);

printf(“My int: %d\n”, 121);

Printf Types



Basic scanf Conversion Specification

• Ordinary characters expected to match input stream
• Begin with % and end with a conversion character
• Between the % and conversion character, in order

• Flags
• *, assignment suppression

• Field width
• number, maximum number of characters

• Type modifier
• h, for short argument
• l, (letter ell) for long or double argument

scanf("count:%5ld\n", &cnt); 



Basic scanf Conversions

Character Input Data; Argument Type

d decimal number; int *

i integer; int *. The integer may be in octal (leading 0) or hex (leading 0x or 0X).

o octal integer (with or without leading zero); int *

u unsigned decimal integer; unsigned int *

x hexadecimal integer (with or without leading 0x or 0X); int *

c characters; char *. The next input characters (default 1) are placed at the indicated spot. The 
normal skip-over white space is suppressed; to read the next non-white space character, use 
%1s

s character string (not quoted); char *, pointing to an array of characters long enough for the 
string and a terminating '\0' that will be added.

e,f,g floating-point number with optional sign, optional decimal point and optional exponent; 
float *



Basic scanf Example

• Suppose we want to read
25 Dec 1988

• The scanf statement is
int day, year;
char monthname[20];

scanf("%d %s %d", &day, monthname, &year);

• No & is used with monthname, since an array name is a pointer.



Arithmetic Operators

• Binary arithmetic operators
+ - * / % (higher precedence)

• Unary arithmetic operators (higher precedence)
+ -

• Integer division truncates any fractional part
• The % operator cannot be applied to a float or double



Relational and Logical Operators

• Relational operators
> >= < <=

• Equality operators (lower precedence)
== !=

• Logical operators (evaluated left to right)
&& ||

• Evaluation stops as soon as the truth or falsehood of the result is known
i < lim-1 && (c=getchar()) != '\n'
x || ++y

• Unary negation operator
!
if (!valid)… same as   if (valid == 0)…

RH side may not be 
evaluated.
Important when side 
effects are involved.



Type Conversion

• For binary operators with operands of different types
• “lower” type is promoted to “higher” type before operation
• (lower) int → long → float → double (higher)
• (lower) unsigned → signed (higher)

float r, f; int i;
r = i * f; /* i is converted to a float first */

• Across assignments
• Value on the right is converted to type on the left
• May involve extension, rounding or truncation

d = i; /* double d; int i; */

• When arguments are passed to functions
r = sqrt(2); /* integer 2 is converted to double 2.0 */

• In an expression with a cast, (type name) expression
(double)ticks/TICKS_PER_SECOND /* ticks is a long */

See K&R 
Appendix 
A.6 for 
details



Increment and Decrement Operators

• ++ adds 1 to its operand
• -- subtracts 1 from its operand

• May be used as a prefix (++n) or postfix (n++) operator
• ++n increments n before its value is used
• n++ increments n after its value has been used

If n is 5, then
x = n++; /* sets x to 5 */
x = ++n; /* sets x to 6 */
In both cases, n becomes 6

• Useful when indexing arrays in a loop
while ((s[i++] = t[j++])) ; /* copy string t */



Bitwise Operators

• May only be applied to integral operands
char, short, int, and long

• Mask off selective bits
/* set lowest 3 bits to 0 */
n = n & ~0x07;

• Turn bits on
/* set lowest 3 bits to 1 */
n = n | 0x07;

• Shift bits
n = n << 2; /* shift bits in n 2 positions left */
n = n >> x; /* fills with zeros if n unsigned */

O
p Function

& Bitwise 
AND

| Bitwise OR

^ Bitwise 
XOR

~ Bitwise 
NOT

<< Left shift

>> Right shift



Assignment Operators and Expressions

• The operator += is called an assignment operator
i += 2; /* increment i by 2, same as i = i + 2; */
yypv[p3+p4] += 3; /* left side only evaluated once */
x *= y + 1; /* means x = x * (y + 1); */

• Most binary operators have a corresponding assignment operator op=, where op is:
+ - * / % << >> & ^ |

• If expr1 and expr2 are expressions, then
expr1 op= expr2

is equivalent to
expr1 = (expr1) op (expr2)
except expr1 is computed only once



Conditional Expressions

• A conditional expression is written with the ternary operator
expr1 ? expr2 : expr3

The expression expr1 is evaluated first
If it is non-zero, expr2 is evaluated
Otherwise expr3 is evaluated

• Set z to the maximum of a and b
z = (a > b) ? a : b;

• Note that the conditional expression is indeed an expression and can be used where 
other expressions are used



Operator Precedence

Operators Associativity

() [] -> . left to right

! ~ ++ -- + - * (type) sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

Unary & +, -, and * have 
higher precedence than the 
binary forms.

if (x & MASK == 0) ...

Evaluated first

x = y += z = w;

Evaluated first


	C Programming Part 3:�I/O, Operators
	Basic printf Conversion Specification
	Basic printf Conversions
	String printf Examples
	Printf Types
	Basic scanf Conversion Specification
	Basic scanf Conversions
	Basic scanf Example
	Arithmetic Operators
	Relational and Logical Operators
	Type Conversion
	Increment and Decrement Operators
	Bitwise Operators
	Assignment Operators and Expressions
	Conditional Expressions
	Operator Precedence

