
C Programming Part 2:
Variables

ECEN 330: Introduction to Embedded Programming

Variables are human-readable names for the computer's
memory addresses used by a running program.

What are variables?

Declarations

• Variables must be declared before use

• A declaration specifies a type and a list of one or more variables
int lower, upper, step;
char c, line[1000];

• Variables can be initialized
char esc = '\\';
int i = 0;
int limit = MAXLINE+1;
float eps = 1.0e-5;

Global variables:
initialized to zero by default
initializer must be a constant expression
initialized once at beginning of program

Automatic (Local) variables:
undefined by default
initializer may be any expression
initialized each time function entered

• Variable assignments return the value of the assignment:

anumber = anothernumber = yetanothernumber = 8;

• Sometimes you will see this used within IF statements:

if ((x = getchar()) == ‘\n’)

Variable Assignments

Variable Names

• Names are made up of letters and digits

• First character must be a letter

• Underscore “_” counts as a letter
• Don’t begin variable names with underscore

since library routines often use such names

• Upper and lower case letters are distinct

Data Types and Sizes

• char a single byte, capable of holding one character

• int an integer, typically the natural size of machine

Qualifiers that can be applied to these basic types

• short at least 16 bits, not longer than int

• long at least 32 bits, not shorter than int

short int sh;

long int counter;

The word int can be omitted in such declarations

When you need to know
the exact size, use
<stdint.h>:

• int8_t
• uint8_t
• int16_t
• uint16_t
• int32_t
• uint32_t
• int64_t
• uint64_t

• float single-precision floating point (32 bits)

• double double-precision floating point (64 bits)

• How are the bits used? (Similar to representing scientific notation)
• 1 sign bit
• Several exponent bits
• Several significand/mantissa bits

• Floating-point numbers are inexact, but have high range

Floating Point

Literals

• Integer

1234 (int)
1234L (long)
1234U (unsigned)
1234UL (unsigned long)

037 (int in octal)
0x1F (int in hex)
0x1FUL (unsigned long in hex)

• Floating-point

123.4 (double)
1.234e2 (double)
1e-2 (double)

123.4F (float)
1.234e2F (float)
1e-2F (float)

Suffixes can be upper or lower case
(same for x and e)

Character Constants

• Written as one character within
single quotes
'x'

• Type is an integer

• Value is ASCII encoding
'0' has the value 48

• Escape sequences

\0 null character

\n newline

\r carriage return

\t horizontal tab

ASCII Values

String Literals

• Sequence of zero or more characters in double quotes
"I am a string" /* quotes are not part of string */

• A string is an array of characters with a '\0' at the end

• Be careful to distinguish between 'x' and "x"

• strlen(s) returns the length of the string s excluding '\0'

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

Enumeration Constants

• An enumeration is a list of constant integer values
enum boolean { NO, YES }; /* NO = 0, YES = 1 */

• The first name in an enum has value 0, the next 1, and so on

• Values can be specified
enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

• Unspecified values continue the progression from the last specified value
enum states { S_IDLE, S_BUSY = 4, S_DONE };

/* 0, 4 5 */

The const qualifier specifies that a variable’s value will not be changed
(can not write to it)

const double e = 2.71828182845905;
const char msg[] = "warning: ";
int strlen(const char[]);

#define A B
• Before compilation, any “A” text is replaced with “B”

Constants using const & #define

Tradeoffs

const variable
• Has type, scope

• May or may not occupy
memory space (compiler
dependent)

• Not a true constant – can’t be
used as case in switch or to
size array
const int size = 10;
int size2 = size;

(the size2 global variable won’t compile)
error: initializer element is not constant

#define value
• Relies on simple text

substitution by preprocessor
(before compilation)

• Can result in subtle bugs:
#define OFFSET 5
#define SIZE OFFSET+3
…
char buf[SIZE * 2];

Expands to
5 + 3 * 2 = 11

The static keyword

1. Static Local Variable
• Variable maintains value across function

invocations

2. Scope limited to its own .c file
• Global variables, or
• Functions

void foo() {
static int x = 0;
x++;
printf(“%d\n”, x);

}

static cnt = 0;
static void foo() {
…

}

static cnt = 3;
static int foo() {
…

}

drawingSM.c

controlSM.c

..and the other completely different meaning…

X

extern keyword indicates that a function or variable is defined in a different file.

Functions:
• extern void foo();

• Indicates that foo is in another file.
• This is optional. So don’t do it – it just litters your code

Variables:
• extern int x;

• Indicates x is a global variable in another file, and ensures space is not allocated in this file.
• Without extern, you can still link to variables in other files (even unintentionally)
• Best approach:

• If you mean to link to a variable in another file, use extern
• If you only want the global to be accessed in the current file, use static.

Extern

