
C Programming Part 1:
Overview

ECEN 330: Introduction to Embedded Programming

All C programs start with “main”
• Return 0 if no error

#include
• Before compilation the included file is literally copied

into this location.
• <> Look in system directories
• “ “ Look in user’s program directories

• In C, each “.c” file is compiled separately, and linked
together later

• .h files contain information about what is available in
other compiled files:

• Function declarations (like “printf”)
• Data types (like uint32_t)

Hello World , #include

#include <stdio.h>

int main(void)
{

printf("Hello, World!\n");
return 0;

}

• Where does printf go?
• Terminal / Console

• This is called “stdout” (Standard Out)

• You can also get characters that the user types into
the terminal

• This is called “stdin” (Standard In)

Console

#include <stdio.h>

int main(void)
{

printf("Hello, World!\n");
return 0;

}

There are lots of different C compilers out there, but GCC is open-source and the most
popular.

gcc main.c

This will produce an executable named “a.out”, and we can run it like this:

./a.out

If we want the executable to be named differently:

gcc main.c -o myExe

For the labs, we use Cmake/Make (which calls gcc behind the scenes)

Compiling with GCC

• C code is made up of statements

• Statements are ended by semicolons

Statements

int i = 6;

/* this declares the variables 'i', 'test', 'foo', and 'bar'
note that ONLY the variable named 'bar' is set to six! */

int i, test, foo, bar = 6;

A block is a set of executable statements

Blocks are normally started with functions,
loops, if statements, etc.

…but you can make new blocks wherever
you want (this isn’t very common)

Blocks

int main(void)
{

/* this is a 'block' */
int i = 5;

{
/* this is also a 'block', nested
inside the outer block */
int i = 6;

}

return 0;
}

• Global scope: Accessible throughout the entire file
• Also accessible from other files (unless declared static)

• Local scope: Only accessible within the block it was declared in.

Scope

int i = 5; /* this is a 'global' variable, it can be accessed from anywhere in
the program */

/* this is a function, all variables inside of it are "local" to the function. */
int main(void) {
int i = 6; /* 'i' now equals 6 */
printf("%d\n", i); /* prints a '6' to the screen, instead of the global

variable of 'i', which is 5 */

return 0;
}

Scope

int main(void)
{

int i = 6; /* this is the first variable of this 'block', 'i' */

{
/* this is a new 'block', it has its own scope */

int i = 5;
printf("%d\n", i); /* prints a '5' onto the screen */

}

/* now we're back into the first block */

printf("%d\n", i); /* prints a '6' onto the screen */

return 0;
}

• In C, you cannot have executable code
outside of a function

• (Some languages allow this, but not C)

• This code also won’t compile

• This works!
• One of the benefits of using #define

Executable Code Outside Functions

int main() {
printf("Hello world\n");
return 0;

}
printf("This is outside a function\n");

int x1 = 10;
int x2 = x1 * 2;

int main() {
printf("x1 = %d, x2 = %d\n", x1, x2);
return 0;

}

#define X1 10
#define X2 (X1 * 2)

int main() {
printf("X1 = %d, X2 = %d\n", X1, X2);
return 0;

}

• The Standard Library provides functions for tasks such as input/output, string manipulation,
mathematics, files, and memory allocation.

• Eg, printf
• The Standard Library does not provide functions that are dependent on specific hardware or

operating systems, like graphics, sound, or networking.

• (From Wikipedia) Many other implementations exist, provided with both various operating
systems and C compilers. Some of the popular implementations are the following:

• The BSD libc, various implementations distributed with BSD-derived operating systems
• GNU C Library (glibc), used in GNU Hurd, GNU/kFreeBSD and Linux
• Microsoft C run-time library, part of Microsoft Visual C++
• dietlibc, an alternative small implementation of the C standard library (MMU-less)
• μClibc, a C standard library for embedded μClinux systems (MMU-less)

• uclibc-ng, an embedded C library, fork of μClibc, still maintained, with memory management unit (MMU)
support

• Newlib, a C standard library for embedded systems (MMU-less)[5] and used in the Cygwin GNU
distribution for Windows

• klibc, primarily for booting Linux systems
• musl, another lightweight C standard library implementation for Linux systems[6]

• Bionic, originally developed by Google for the Android embedded system operating system, derived
from BSD libc

C Standard Library

https://en.wikipedia.org/wiki/BSD_libc
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/GNU/kFreeBSD
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Windows_library_files#CRT
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
https://en.wikipedia.org/wiki/Dietlibc
https://en.wikipedia.org/wiki/UClibc
https://en.wikipedia.org/wiki/%CE%9CClinux
https://en.wikipedia.org/wiki/UClibc
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Newlib
https://en.wikipedia.org/wiki/C_standard_library#cite_note-5
https://en.wikipedia.org/wiki/Cygwin
https://en.wikipedia.org/wiki/Klibc
https://en.wikipedia.org/wiki/Musl
https://en.wikipedia.org/wiki/C_standard_library#cite_note-6
https://en.wikipedia.org/wiki/Bionic_(software)

	C Programming Part 1:�Overview
	Hello World , #include
	Console
	Compiling with GCC
	Statements
	Blocks
	Scope
	Scope
	Executable Code Outside Functions
	C Standard Library

