
Information Representation

How do we convey written ideas?
Example: How do we convey the concept of a greeting in words?

Hello,

Hola,

Привет,

こんにちは,

Hallo,

Hallo,

…

Information Representation
We might write one of several things…

Hello,

Hola,

Привет,

こんにちは,

Hallo,

Hallo,

Information Representation

English

Spanish

Russian

Japanese

????

????

Which is almost enough to know what it means and what it is…

Hello,

Hola,

Привет,

こんにちは,

Hallo,

Hallo,

Information Representation

English

Spanish

Russian

Japanese

????

????

my name is Donald.

me llamo Donald.

меня зовут Дональд.

私の名前はドナルドです

mein name ist Donald.

mijn naam is Donald.

But we sometimes need context to figure it out.

English

Spanish

Russian

Japanese

German

Dutch

Hello,

Hola,

Привет,

こんにちは,

Hallo,

Hallo,

Information Representation
But we sometimes need context to figure it out.
my name is Donald.

me llamo Donald.

меня зовут Дональд.

私の名前はドナルドです

mein name ist Donald.

mijn naam is Donald.

English

Spanish

Russian

Japanese

German

Dutch

Hello,

Hola,

Привет,

こんにちは,

Hallo,

Hallo,

Information Representation

Conclusion: With words, the Shape, structure, and context give us the
information, not the characters themselves. In computing, we can’t just look at the

number and assume it means what we think it means. We often need more
context and understanding to get the value being described.

my name is Donald.

me llamo Donald.

меня зовут Дональд.

私の名前はドナルドです

mein name ist Donald.

mijn naam is Donald.

Information Representation
Data |

Let’s learn how to recognize and use the following
things today!

Binary

Hex

Decimal
char
int
uintX_t
float

2’s Complement
And more!

Data Representation:
Number Formats

Name Base Digits (written as a set) “Definition”

Decimal
eg. 10, 524

10 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 }

Each place value x represents x*10n,
where is n is the index of the value in
the number (0 idx-ed).

Hexadecimal
eg. 0x11, 0x449, 0xF1

16 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F }

Each place value x represents x*16n,
where is n is the index of the value in
the number (0 idx-ed).

Binary
eg. 0b1101 0b0001

2 { 0, 1, } Each place value x represents x*2n,
where is n is the index of the value in
the number (0 idx-ed).

Data Representation:
Number Formats

Name Base Digits (written as a set) “Definition”

Decimal
eg. 10, 524

10 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 }

Each place value x represents x*10n,
where is n is the index of the value in
the number (0 idx-ed).

Hexadecimal
eg. 0x11, 0x449, 0xF1

16 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F }

Each place value x represents x*16n,
where is n is the index of the value in
the number (0 idx-ed).

Binary
eg. 0b1101 0b0001

2 { 0, 1, } Each place value x represents x*2n,
where is n is the index of the value in
the number (0 idx-ed).

Did you notice? The number of digits in the digit set is equal to the base! What does this imply, and
why is it like that?

Data Representation:
Number Formats

Name Base Digits (written as a set) “Definition”

Decimal
eg. 10, 524

10 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 }

Each place value x represents x*10n,
where is n is the index of the value in
the number (0 idx-ed).

Hexadecimal
eg. 0x11, 0x449, 0xF1

16 { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F }

Each place value x represents x*16n,
where is n is the index of the value in
the number (0 idx-ed).

Binary
eg. 0b1101 0b0001

2 { 0, 1, } Each place value x represents x*2n,
where is n is the index of the value in
the number (0 idx-ed).

Did you notice? Even if two numbers use the same digits, eg. 110 and 0b110, hex and binary have
prefixes to indicate what the digits represent.

Data Representation:
Data Types (Containers)

Name Width Range Signed?

char 8 -128 → 127 OR 0 → 255 unspecified

short 16 -32,768 → 32,767 yes

int 32 -2,147,483,648 → 2,147,483,647 yes

float 32 1.2E-38 → 3.4E+38 , Prec: 6 yes

double 64 2.3E-308 → 1.7E+308, Prec: 15 yes

long 64 -9223372036854775808 → 9223372036854775807 yes

uintX_t , { X ∈ 2N, 3 ≤ N ≤ 6 } X 0 → 2X - 1 no

Name “Definition”

2’s Complement An interpretation of the binary format where given a binary number of N
bits, instead of the highest bit N-1 having the value of 2N-1, we say that
it has the value -2N-1. This gives us many useful properties and allows
us to store negative values without requiring an extra symbol (the -
symbol).

long, static, volatile, unsigned, etc. We can append different keywords to certain data types to increase
their width, increase their scope, change their accessibility, decide if
they are 2’sC or not, and maybe other things (?)

IEEE format An interpretation of the binary format where a binary number of N bits is
divided into three groups: the highest bit N-1 (or sign bit), some
number of exponent bits E, and some number of mantissa bits M.
Notice that 1 + E + M = N. We use these groups to store values of an
equation, which generates a high precision fractional value.

Data Representation:
Special Cases, etc.

Data Representation:
Special Cases, etc.

Data Representation
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Convert each of the following numbers from their starting base to the other two (i.e. dec → bin & hex).

Assume binary numbers are not in two’s complement.

0b11010110

154

0xD4

0x45F1

0b11010110 10110101

Data Representation
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Invert the following numbers (neg to positive or vice versa), which are in two’s complement, and then

convert them to hex, and then decimal.

0b11010110

0b11010110 10110101

0b11111111 11111111 11111111 11111111

0b00010101

0b01111111

Data Representation
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Write out the bits that would be stored for each of the following type definitions.

char a = 0x54;

uint32_t b = 156;

int c = 0b11001001;

Challenge:

int oof = 0xF4A1 - ‘z’;

float ouch = 65.345

Data Representation
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Write out the bits that would be stored for each of the following type definitions.

int array[3] = { 123, 234, 345 };

uint8_t d = 400;

float e = 3645.4243

char name[10] = “Joe Biden”;

Data Representation: Answers
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Convert each of the following numbers from their starting base to the other two (i.e. dec → bin & hex).

Assume binary numbers are not in two’s complement.

0b11010110 : 0xD6, 214

154 : 0x9A, 0b10011010

0xD4 : 212, 11010100

0x45F1 : 17905, 0b10001011 1110001

0b11010110 10110101 : 54965, 0xD6B5

Data Representation: Answers
There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones

that should help you get yourself ready to work in C.

Invert the following numbers (neg to positive or vice versa), which are in two’s complement, and then

convert them to hex, and then decimal.

0b11010110 : 0b00101010, 42

0b11010110 10110101 : 0b00101001 01001011, 10571

0b11111111 11111111 11111111 11111111 : 0b00000000 00000000 00000000 00000000, 1

0b00010101 : 0b11101011 , -21

0b01111111 : 0b10000001, -127

There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones
that should help you get yourself ready to work in C.

Write out the bits that would be stored for each of the following type definitions.

char a = 0x54; : 01010100 //note the lack of 0b here; these are bits so they don’t have a prefix

uint32_t b = 156; : 00000000 00000000 00000000 10011100

int c = 0b11001001; : 00000000 00000000 00000000 11001001
^^^ There is some argument here that certain compilers might automatically interpret this as a signed char, but according to what I know it is a literal, whose

default type int (?) which means that the leading bit is a 0 after all. Try asking chat or compiling this one your own in a simple C program.

int oof = 0xF4A1 - ‘z’; : 00000000 00000000 11110100 00100111

float ouch = 65.345 : 01000010 10000010 10110000 10100100
If you need help learning about Floating Point, you can use this calculator: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Data Representation: Answers

https://www.h-schmidt.net/FloatConverter/IEEE754.html

There are realistically too many examples to cover in a simple recitation, but let’s try some basic ones
that should help you get yourself ready to work in C.

Write out the bits that would be stored for each of the following type definitions.

int array[3] = { 123, 234, 345 };
00000000 00000000 00000000 01111011 00000000 00000000 00000000 11101010 00000000 00000000 00000001 01011001

uint8_t d = 400; : 10010000 // note the overflow

float e = 3645.4243 : 01000101 01100011 11010110 11001010

char name[10] = “Joe Biden”; :
01001010 01101111 01100101 00100000 01000010 01101001 01100100 01100101 01101110

Data Representation: Answers

