
Working with arrays,
multidimensional arrays

 in C

Array Declaration in C:

type name[size] = {init};

the name uses the same
naming scheme as all

variables in C. the name
serves as the base for the
array, and is a pointer to

the first element.

Arrays must be given as
size, to determine the
block size. See Array

Sizing for more info, and
Array iteration for how []
are used as operators.

Optionally, arrays can be
given an initializer list that

tells some or all the
elements what their

starting value is.

Data types include char,
int, double, uint32_t etc.

They determine the block
size and stride of the

array.

Array Initialization
Whenever you declare a variable in C, it has to be ‘initialized,’ so that it can be used in a program. How an array is

initialized depends on the scope of its declaration, and whether or not you give it values.

When you declare an array in C, one of three things can happen:
1. You give it an initializer list for some or all the elements.

int arrayone[3] = {1,2,3} // initializes to {1,2,3} because you gave it values.

2. If no values are given, then the initialization depends on the scope:

a. If the array is global or static it is initialized to zero:

static char arraytwo[5]; // initializes as {0,0,0,0,0}

b. If the array is within a local scope, it simply takes a block of memory, but does not set

all the bits to zero. This means you don’t know what’s in those values when you use

them, unless you set them after declaration but before using them.

int arraythree[4]; // initializes as ‘garbage’ - you don’t know what it is

Array Block Sizing
Arrays take up space. How do we know how much space they
take up? Two things determine that: the data type given, and the
size of the array!

Arrays need a size! There are three valid ways to give an array a size:

1. With a size

a. int array[5]; // takes up 20 bytes; initializes to G,G,G,G,G

2. With an initialization matrix

a. short other[] = {1,2,3,4,5,6,7,8} // takes up 16 bytes; initializes to 1,2,3,4,5,6,7,8

3. With both!

a. char thingone[5] = {1,2,3,4,5} // takes up 5 bytes; initializes to 1,2,3,4,5

b. int thingtwo[5] = {6,7,8} // takes up 5 bytes; initializes to 1,2,3,G,G

Remember:
G means, ‘garbage,’ or that you cannot
know what is stored in that value, but
also you cannot assume its 0.

Array Iteration
Whenever you use an array, you are doing simple operations on it. Arrays know what value you are looking for because of

the base given, the stride, and the index operator given.

remember that arrays are 0 indexed! this means array[5] has 5 elements labeled 0-4. The largest element idx is always size - 1

Base:
The base of an array is its name, which acts as a point to the first byte of memory the array controls. However, unlike a

pointer, an array base cannot be reassigned (otherwise the array would be lost).

Stride:
The stride of an array is the distance, in units of bytes, that an array pointer moves as it indexes through an array. The

stride matches the size of the data type given, so that the array indexes cleanly through itself. (i.e char = 1, int = 4, etc.)

Index Operator:
The ‘[x]’ is called an index operator, and actually isn’t specific to arrays. When you use the index operator (except for in

declaration), you are in essence saying, “start at the base, stride x times and return that result.”

Examples:
int array[10] = {0,1,2,3,4,5,6,7,8,9}; // in this case [] is not an index operator, but part of the declaration

printf(“%d\n”, array[5]); // “5” - start at the base (which points to the 0), and stride 5 units

printf(“%d\n”, array[10]); // “G” - this isn’t illegal, though it is out of bounds. Be careful with indexing!

Multi-dimensional Arrays

Rules of Multi-dimensional Arrays
All the dimensions of the array must be specified at declaration. You may omit the size of the first dimension (left to right) if

you provide an initializer list.

int array[2][4][6]; // creates a list of size 2 x 4 x 6 with all garbage values.

char second[][3] = { {1,2,3}, {4,5,6}, {7,8,9} }; // creates an array of size 3 x 3 initialized with that list.

short another[][4] = {1,2,3,4}; // creates an array of size 1 x 4 initialized to 1,2,3,4.

Multi-dimensional arrays still only use one data type, which means that the stride works the same as before, as does the

base.

Arrays are stored in row-major order, which means that they are stored in contiguous memory the same way that single

dimension arrays are.

Why use them then, if they are just weirdly notated single dimension arrays? Because it allows us as humans to do have a

much more visual interface for interacting with large quantities of data.

12 Bytes

Visualizing Multi-dimensional Arrays

int runners_times[2][3];
An array that has the time in seconds two different runners ran in three different races.

1 2 3 4 5 6

Memory Visualization:

Data Visualization:

1 2 3

4 5 6

3 Times

2
Runners

12 Bytes

0x1000 0x1017

Char Short Int Long

Notice how much easier it is
to consider the array as “two

dimensions” and let the
computer decide where to

literally put the data.
Memory visualization is nice

to know how much space
the array takes up, but the

data visualization is how we
as humans will likely interact

with our arrays.

‘x’ position

Visualizing Multi-dimensional Arrays

char rubix_cube_state[6][3][3];
An array that store the state of a rubix cube by storing the color of each square at each location.

Memory Visualization: Data Visualization:

0x1000

0x1023

Char Short Int Long

9 Bytes

Which Face
(U,D,L,R,F,B)

‘y’
position

9 Bytes 9 Bytes

9 Bytes9 Bytes

9 Bytes

When using memory visualization, we have no idea where the data we
want is located in the array. With data visualization, we have no idea
where in memory we would find the data, though we can see it. This
duality gets compounded the bigger the array, and we quickly lose the
ability to the position of the data, and analyze the data at the same time.

Visualizing Multi-dimensional Arrays

char gif_data[100][1080][1920][3];
An enormous array that store a 100 frame gif by pixel and then by the RBG value of that pixel.

Memory Visualization: Data Visualization:

Char Short Int Long

…

…

GR
B

…

…

RGB Vals (3)

Frame Number

P
ix

el
 R

ow
 N

um
be

r

Pixel Column Number

For each frame…

For each pixel…
too hard :[

