# **Computer Networks**

# What is the Internet?

A bunch of computers hooked up

# What is the Internet?

- A network of networks
- Hosts (PC, server, laptop, smartphone, sensor)
- Communication links (wireless, wired)

>>mobile network global ISP home network regional ISP institutional network

# **Network Structure**

- Network edge hosts
- Network core interconnected routers



# What is the Internet?

- How can they all talk to each other?
- Protocols!
- TCP, IP, HTTP, Skype, 802.11









## Protocols



**TCP** connection request



GET <u>byu.edu</u>

## Protocols

## Protocols

- Reliability
- Security
- Privacy
- Fairness
- Routing





Transport

Network

Link

Physical

## **OSI Model**



Presentation

Session

Transport

Network

Link



Transport

Network

Link

- **Application specific data**
- **Program-to-program communication**
- **Host-to-host communication**
- Hop-to-hop communication
- **Electricity**



Transport

Network

Link

Physical

## HTTP, SSH, FTP

## TCP, UDP

### IP

### Ethernet, WiFi

Bits on a wire, wireless transmission (1000BASE-T, OFDM)



#### Application

Transport

Network

Link

Physical





#### HTTP

#### Application

Transport

Network

Link





#### Port: 34821

Application

Transport

Network

Link

Physical

#### **Port: 80**





TCP





#### IP address: 10.0.1.45

Application

Transport

Network

Link

Physical

#### IP address: 64.233.191.126













## Application

Transport

Network

Link











1000BASE-T, OFDM







- Types of messages exchanged (request, response)
- Message syntax (format of bytes)
- Message semantics (meaning of information)
- Communication rules (sending & responding to messages)

## **Application Layer Protocol**

- Data integrity
- Timing
- Security

## **Application Layer Protocol**

- Client/server model
- Client browser requests data (using HTTP) and displays web objects (such as HTML)
- Server sends (using HTTP) objects in response to requests

## HTTP

- Two types of HTTP messages: request, response
- Use ASCII in message structure

## HTTP

GET /index.html HTTP/1.1\r\n Host: www.google.com\r\n User-Agent: HTTPie/1.0.2\r\n Accept: \*/\*\r\n Connection: keep-alive\r\n  $r\n$ 

# HTTP Request

Accept-Encoding: gzip, deflate\r\n

# HTTP Response

HTTP/1.1 200 OK\r\n Content-Encoding: gzip\r\n Content-Length: 5191\r\n Content-Type: text/html;\r\n charset=ISO-8859-1\r\n r n...data...

```
Cache-Control: private, max-age=0\r\n
Date: Tue, 14 Jan 2020 14:30:54 GMT\r\n
```

## **DNS: Domain Name System**

- Every server has an IP address
- Names are easier to remember for humans
- DNS maps names to IP addresses



## Transport Services and Protocols

- Provide *logical communication* between app processes running on different hosts
- Transport protocols run in end systems
  - Send side: breaks app messages into segments, passes to network layer
  - Receive side: reassembles segments into messages, passes to app layer
- Internet: TCP and UDP

- Simple Internet transport protocol
- Data sent in segments
- effort")
- and receiver

## UDP

### • Segments may be lost or delivered out-of-order ("best

Connectionless — no handshaking between UDP sender

# **TCP Overview**

- Point-to-point—one sender, one receiver
- Reliable, in-order byte stream—no message boundaries
- Pipelined—TCP congestion and flow control set window size
- Full duplex data
- Connection oriented
- Flow controlled—sender will not overwhelm receiver



# Network Layer

- Transport segment from sending to receiving host
- Sender: encapsulates data into packets
- Receiver: delivers packets to transport layer
- Every host and router has network layer protocols
- Responsible for forwarding and routing data
- Router examines header fields in all IP datagrams



## Data Plane and Control Plane

### **Data Plane**

- Local, per-router function
- forwarded to router output port (forwarding)

#### **Control Plane**

- Network-wide logic

• Determines how datagram arriving on router input port is

 Determines how datagram is routed among routers along path from source host to destination host (routing)

# Routing

## Individual routing algorithm components in each router interact with the control plane



# Network Layer



Transport

Network

Link

# Network Layer

### Transport

Routing Protocols (RIP, OSPF, BGP) Network



#### Link

- 32-bit identifier for host and router interface
- Use dotted-decimal notation
- Interface: connection between host/ router and physical link
- IP addresses associated with each interface



- Two parts to an IP address
  - Subnet (higher order bits)
  - Host (low order bits)

subnet part







## Subnets

- CIDR: Classless InterDomain Routing
- Subnet portion (or network prefix) of address of arbitrary length
- Address format: a.b.c.d/x, where x is # bits in subnet portion of address

- 200.23.16.0/23
- 11001000 00010111 00010000 00000000
  - /23 = 255.255.254.0

• Used for identification

subnet part



- Used for location
  - Longest prefix matching



- How does a host get an IP address?
  - Set a static IP address
  - DHCP

## Dynamic Host Configuration Protocol (DHCP)

- Allow host to dynamically obtain an IP address from network server when it joins the network
- IP address get reserved (leased) for certain amount of time
- Can renew its lease on address its already using
- After lease expires, IP address can be used for another device





| Address block 🗢    | Address<br>range                | Number<br>of <del>\$</del><br>addresses | Scope <del>\$</del> | Description \$                                                                                                                                                                            |
|--------------------|---------------------------------|-----------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0.0/8            | 0.0.0.0–<br>0.255.255.255       | 16 777 216                              | Software            | Current network <sup>[1]</sup> (only valid as source address).                                                                                                                            |
| 10.0.0/8           | 10.0.0.0–<br>10.255.255.255     | 16 777 216                              | Private network     | Used for local communications within a private network. <sup>[2]</sup>                                                                                                                    |
| 100.64.0.0/10      | 100.64.0.0–<br>100.127.255.255  | 4 194 304                               | Private network     | Shared address space <sup>[3]</sup> for communications between a service provider and its subscribers when using a carrier-grade NAT.                                                     |
| 127.0.0.0/8        | 127.0.0.0–<br>127.255.255.255   | 16 777 216                              | Host                | Used for loopback addresses to the local host. <sup>[1]</sup>                                                                                                                             |
| 169.254.0.0/16     | 169.254.0.0–<br>169.254.255.255 | 65 536                                  | Subnet              | Used for link-local addresses <sup>[4]</sup> between two hosts on a single link when no IP address is otherwise specified, such as would have normally been retrieved from a DHCP server. |
| 172.16.0.0/12      | 172.16.0.0–<br>172.31.255.255   | 1 048 576                               | Private network     | Used for local communications within a private network. <sup>[2]</sup>                                                                                                                    |
| 192.0.0.0/24       | 192.0.0.0–<br>192.0.0.255       | 256                                     | Private network     | IETF Protocol Assignments. <sup>[1]</sup>                                                                                                                                                 |
| 192.0.2.0/24       | 192.0.2.0–<br>192.0.2.255       | 256                                     | Documentation       | Assigned as TEST-NET-1, documentation and examples. <sup>[5]</sup>                                                                                                                        |
| 192.88.99.0/24     | 192.88.99.0–<br>192.88.99.255   | 256                                     | Internet            | Reserved. <sup>[6]</sup> Formerly used for IPv6 to IPv4 relay <sup>[7]</sup> (included IPv6 address block 2002::/16).                                                                     |
| 192.168.0.0/16     | 192.168.0.0–<br>192.168.255.255 | 65 536                                  | Private network     | Used for local communications within a private network. <sup>[2]</sup>                                                                                                                    |
| 198.18.0.0/15      | 198.18.0.0–<br>198.19.255.255   | 131 072                                 | Private network     | Used for benchmark testing of inter-network communications between two separate subnets. <sup>[8]</sup>                                                                                   |
| 198.51.100.0/24    | 198.51.100.0–<br>198.51.100.255 | 256                                     | Documentation       | Assigned as TEST-NET-2, documentation and examples. <sup>[5]</sup>                                                                                                                        |
| 203.0.113.0/24     | 203.0.113.0–<br>203.0.113.255   | 256                                     | Documentation       | Assigned as TEST-NET-3, documentation and examples. <sup>[5]</sup>                                                                                                                        |
| 224.0.0.0/4        | 224.0.0.0–<br>239.255.255.255   | 268 435 456                             | Internet            | In use for IP multicast. <sup>[9]</sup> (Former Class D network).                                                                                                                         |
| 240.0.0/4          | 240.0.0.0–<br>255.255.255.254   | 268 435 456                             | Internet            | Reserved for future use. <sup>[10]</sup> (Former Class E network).                                                                                                                        |
| 255.255.255.255/32 | 255.255.255.255                 | 1                                       | Subnet              | Reserved for the "limited broadcast" destination address.[1][11]                                                                                                                          |

#### Special address blocks

# Case Study











# Case Study









# Case Study







# Link Layer

- Takes care of transferring data from two physically adjacent devices (one hop)
- Data can transfer different link protocols (e.g., Ethernet, fiber, 802.11)
- Each link provides different services

# Multiple Access Protocols

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes interfere
- Collision if node receives two or more signals at the same time
- Multiple access protocols
  - Distributed algorithm that determines how nodes share channel
  - Communication about channel sharing must use channel itself

# MAC Protocols

- Channel partitioning
- Random access
- Taking turns