19.7. READ-ONLY MEMORIES (ROM) 207

19.7 Read-Only Memories (ROM)

The memories discussed thus far in this chapter have all been Random Access Memories (RAM), meaning they can
be both read and written. It is, however, not uncommon to have a need to include memories in a design which can only
be read from.

Why might you want to use a ROM in a design? Imagine you are designing a circuit which needs to use sin(z)
values as a part of its computation. You have two options for producing sin(z) where x is a multi-bit binary value.

The first option would be to (1) study up on how to compute sin(z) values from some mathematical formulation
such as a Taylor Series and then (2) design a circuit to implement that Taylor Series computation. The resulting circuit
likely would be very large (require a large silicon area) and/or run slowly (possibly requiring many clock cycles to
compute the result).

The second option would be to create a lookup table of sin(x) values using a ROM and, when needed, simply
look up sin(z) by providing = to the address lines of the ROM. Along the way you might perform a variety of
enhancements to how you organize your table so that it could be used for both sin(x) and cos(z). Many other uses
for ROM blocks exist — think of essentially anywhere you might use a table of read-only values (a lookup table) in a
software computation.

In reality, a ROM is not a memory at all and there is no storage involved. Rather, it is a collection of wires and gates
(or simply transistors) which return an output value in response to an input address value. Since the ROM contents
will never be changed, there is no reason to waste silicon creating flip flops to hold the memory contents!

Section [10.5]discussed the use of lookup tables (LUTs) for logic. In that context it used the term ROM to describe
those lookup tables. That is precisely what a ROM is — it is a hardware implementation of a lookup table. You
provide an address and it returns the value associated with that address in the table.

Program[19.7.2] shows the SystemVerilog code for a ROM design. It consists of a case statement that outputs data
values in response to address values (note the default assignment for unspecified locations). The synthesis tools know
how to convert this description into the circuitry needed to implement the lookup table.

Program 19.7.1 SystemVerilog Code for a ROM

module myROM (
input logic[2:0] Addr,
output logic[3:0] DataOut) ;

always_comb
begin
DataOut = 0; // Default output assignment
case (Addr)
0: DataOut = 5;
2: DataOut = 9;
3: DataOut = 10;
4: DataOut = 2;
5: DataOut = 11;
endcase
end
endmodule

You may be thinking “this is all fine and good for tiny lookup tables, but for larger ones this is horribly verbose.” Yes,
it is. And also, it may not generate the most optimal circuit design.

19.7. READ-ONLY MEMORIES (ROM) 208

Many vendors’ tools have mechanisms which allow you to specify ROM contents as the contents of a text file which
can then be read using the functions $readmemh() or $readmemb() during simulation and synthesis. For example, here
is one such example:

Program 19.7.2 SystemVerilog Code for a ROM

module dual_port_rom (
input logic clk,
input logic[7:0] addr,
output logic[15:0] q);

// Declare the ROM as an array
logic [15:0] rom([256];

initial // Read the ROM contents from a file
begin

Sreadmemb ("rom_init.txt", rom);
end

// Access the ROM
assign g = rom[addr];
endmodule

Further, here is a sample memory initialization file for use with the above program. Consult the web for examples
using hex values for the data values.

Program 19.7.3 Contents of File “rom_init.txt”

// This 1s a memory initialization file

// for use in Verilog.

// Addresses of entries must be specified in HEX

// and are prefixed with the @ symbol.

// Data values are either in binary (for readmemb)
// or in hex (for readmemh)

// Unitialized locations will contain ’X’

// You can place underscore symbols in the middle of
// data values to enhance readability if desired.
// Blank lines are ignored.

// C—style comments are allowed.

// This memory has 16 locations of 8 words each

// and this file is in binary.
0101.1111 // Location 0

@2 0010-1001 // Location 2
0100.1001 // Location 3
01111111 // Location 4
0011.0011 // Location 5
0101.1100 // Location 6

@A 11111111 // Location 10
0000.1111 // Location 11

	My Bookmarks
	Introduction to Digital Systems Design
	Digital vs. Analog
	Positional Number Systems
	Digital vs. Analog Continued
	Analog vs. Digital Data Storage
	Analog vs. Digital Data Processing
	Analog vs. Digital - A Summary

	Combinational vs. Sequential Digital Circuits
	Chapter Summary

	Number Systems and Binary Encodings
	Positional Number Notation
	Conversion from Decimal to Other Bases

	Hexadecimal (Base-16) Numbers
	Binary-Coded Decimal
	Other Codes
	ASCII Codes
	Gray Codes

	Chapter Summary
	Exercises

	Signed Number Representations, Negation, and Arithmetic
	Addition of Unsigned Numbers
	Overflow

	Signed Numbers: Sign-Magnitude
	Negating Sign-Magnitude Numbers

	Signed Numbers: 2's Complement
	Sign-Extension
	Negating a 2's Complement Number
	Adding 2's Complement Numbers
	Subtracting 2's Complement Numbers

	Summary — Number representations
	More on Overflow
	Handling Overflow - Some Ideas

	Chapter Summary
	Exercises

	Boolean Algebra and Truth Tables
	Introduction to Boolean Algebra and Truth Tables
	Truth Tables for Arbitrary Functions
	Converting Truth Tables to Boolean Equations
	Converting Boolean Functions to Truth Tables
	Boolean Identities and Theorems
	Single-Variable Theorems
	Two-Variable Theorems
	Commutative, Associative, and Distributive Theorems
	The Simplification Theorems

	Summary of the Boolean Theorems
	Chapter Summary
	Exercises

	Logic Gates
	Basic Gate Types
	Transistors - The Building Blocks of Gates
	Building An Inverter Using FET's

	Other 2-Input Gates
	NAND Gates
	NOR Gates
	An Exclusive-OR Gate
	An Equivalence Gate (The XNOR Gate)

	Multi-Input Gates
	Alternative Gate Symbology
	Multi-Level Logic
	Speed of Operation
	Circuit Area
	Speed and Area Comparisons
	Factoring and Multiplying Out

	Chapter Summary
	Exercises

	Boolean Algebra - Part II
	Inverting a Function - DeMorgan's Rules
	Sum-of-Products and Product-of-Sums Forms
	Canonical Forms - Minterm Expansion and Maxterm Expansion
	Boolean Minimization
	What is a Minimal Form for an Expression?
	Minimization By Applying Boolean Theorems
	Proving Equalities Using Boolean Theorems

	Incompletely Specified Functions and Boolean Minimization
	Summary of Boolean Minimization
	Chapter Summary
	Exercises

	Gates - Part II
	NAND-NAND and NOR-NOR Logic
	Gate Symbology — Matching Bubbles
	Bubble Matching and Reconvergent Fanout

	Optional Material
	Functionally Complete Logic Sets

	Chapter Summary
	Exercises

	An Introduction to Gate-Level Design Using SystemVerilog
	Three Important Rules Regarding Designing using an HDL For Digital Systems Design
	Levels of Design Abstraction in SystemVerilog
	Basic Structural SystemVerilog Design
	Structural Gate Instantiations are Concurrent Statements

	Declaring Wires in SystemVerilog
	CAD Tool Design Flow
	Optional Material
	Use of the ``default_nettype none'' Macro To Catch Mis-typed Signal Names
	New vs. Old Module Declarations in SystemVerilog

	Chapter Summary
	Exercises

	Gate-Level Arithmetic
	A Hardware Adder
	Design of a Subtracter
	An Adder/Subtracter Module
	Chapter Summary
	Exercises

	Higher Level Building Blocks: Multiplexers, Decoders, and Lookup Tables
	Introduction
	Multiplexers
	A 4:1 Multiplexer

	Multi-Bit Wires in Schematics
	Decoders
	Read-Only Memories (Lookup Tables))
	When to Use Multiplexers, Decoders, and ROMs
	Optional Material
	Using Multiplexers for Logic

	Chapter Summary
	Exercises

	Continuing on With SystemVerilog - Hierarchical Design, Constants, and Multi-Bit Signals
	Creating Hierarchy Via Structural Instantiation
	Semantics of Module Instantiation

	Specifying Constants in SystemVerilog
	Accessing Bits of Multi-Bit Wires in SystemVerilog
	More on Naming - Modules, Instance Names, and Wires
	Hierarchical Design Flow
	Chapter Summary

	Karnaugh Maps
	Truth Tables to KMaps
	Three-Variable KMaps
	Minterm and Maxterm Expansions and KMaps
	Circling More Than Two 1's

	Four-Variable KMaps
	Plotting a Boolean Equation on a KMap
	Deriving Product of Sum Expressions from KMaps
	Solving a KMap With Don't Cares
	Finding Optimal Solutions Using KMaps
	A Worked Example — A BCD to 7-Segment Converter
	Chapter Summary
	Exercises

	Gate Delays and Timing in Combinational Circuits
	Introduction
	Basic Gate Delays
	Critical Path Analysis (Worst Case Analysis)
	Input Glitches, Timing, and Gate Behavior
	Output Glitches and False Outputs
	Gate Delay Variations
	Gate Delay Variation: Summary

	Chapter Summary
	Exercises

	Dataflow SystemVerilog
	A Basic 2:1 MUX
	Dataflow Operators
	Bitwise vs. Logic Operators
	Reduction Operators
	Concatenation and Replication Operators
	Operator Precedence
	Matching Wire Widths

	Example - a 2:4 Decoder
	Parameterization in Dataflow SystemVerilog
	Mixing Dataflow and Structural SystemVerilog Design

	SystemVerilog and Arithmetic
	Chapter Summary
	Exercises

	Latches and Flip Flops
	Bistability and Storage: The SR Latch
	The Gated Latch
	The Master/Slave Flip Flop
	Rising-Edge Triggered Flip flop

	Timing Characteristics Of Flip Flops
	A Note on Timing Diagrams
	Metastability
	Optional Material
	Hold Time for Flip FLops
	Flip Flops With Additional Control Inputs

	Chapter Summary
	Exercises

	Registers and RTL-Based Design
	Flip Flop-Based Registers
	Loadable Registers - First Attempt
	Loadable Registers - The Correct Method

	Shift Registers
	Mini Case Study: An Accumulator-Based Averaging Circuit
	An Introduction to Register Transfer Level (RTL) Design
	The Loadable Register of Figure 16.4
	The Clearable Up Counter of Figure 16.7
	The Shift Register of Figure Figure 16.9
	The Averaging Circuit of Figure 16.11
	More Complex Examples of RTL

	Chapter Summary
	Exercises

	Behavioral SystemVerilog for Registers
	Introduction to Behavioral SystemVerilog
	The always_ff Block
	Shift Register Design Using Behavioral SystemVerilog
	The Semantics of the always_ff Block
	Reset Problems With Registers
	Chapter Summary
	Exercises

	Behavioral SystemVerilog for Combinational Logic
	Combinational always Blocks
	The Use of case Statements in always_comb Blocks

	The Problem With Latches in always_comb Blocks
	Avoiding Latches When Using case Statements
	Summary: Avoiding Latches in always_comb Blocks

	Mapping SystemVerilog Programs to a Specific Technology
	Chapter Summary
	Exercises

	Memories
	Introduction
	Register Files
	Register File Design Using Behavioral SystemVerilog
	Multi-Ported Register Files
	Multi-Ported Register File Design using SystemVerilog
	Larger Memories
	Read-Only Memories (ROM)
	Consulting Tool Documentation
	Optional Material
	Multi-Ported Register Files With Bypass

	Chapter Summary
	Exercises

	Simple Sequential Circuits: Counters
	A Two-Bit Binary Counter
	A Two-Bit Gray Code Counter
	A Counter Example With An Incomplete Transition Table
	Counters With Static Output Signals
	Counters With Additional Inputs
	Counters With Dynamic Outputs
	Mealy vs. Moore Outputs

	Counter Design Using Behavioral SystemVerilog
	Some Thoughts on Counter Design

	Delay Characteristics of Counters
	Output Delay Characteristics of Counters

	Chapter Summary
	Exercises

	State Graphs
	An Example State Graph
	State Graphs For Counters With Inputs
	State Graphs For Counters With Multiple Inputs
	Design Procedure Using State Graphs
	Representing Counter Outputs in State Graphs
	Moore (Static) Outputs
	Mealy (Dynamic) Outputs

	Properly Formed State Graphs
	Chapter Summary
	Exercises

	Finite State Machines
	A Simple State Machine - A Sequence Recognizer
	A Continuous '011' Detector - Moore Version
	A Continuous '011' Detector - Mealy Version

	Finite State Machine Example - Car Wash Controller
	Implementation Details
	A Car Wash With Two Different Wash Settings

	Resetting State Machines
	Chapter Summary
	Exercises

	State Machine Design Using SystemVerilog
	SystemVerilog Features for Coding State Machines
	The 2-Always Block State Machine Coding Style
	Enumerated Types for Symbolic State Names
	The always_comb IFL/OFL Block

	State Machine Coding Styles
	Chapter Summary
	Exercises

	Handling Asynchronous Inputs and Generating Glitch-Free Outputs
	Handling Asynchronous Inputs
	An Example Asynchronous Input Problem
	Solving the Asynchronous Input Problem — The Simplest Solution

	Generating Glitch-Free Outputs
	Chapter Summary

	Field Programmable Gate Arrays (FPGAs) - An Introduction
	Lookup Tables - Universal Function Generators
	Mapping Larger Combinational Circuits to LUTs
	Mapping Gate-Level Circuits to LUTs

	FPGA Logic Elements
	Global FPGA Architecture
	A Mapping Example

	Configuring an FPGA Device
	Configuring a LUT
	Configuring the Fabric

	More Advanced FPGA Architectures
	Configurable Input/Output
	Configuration Technology
	Carry/Cascade Chains
	Programmable Interconnections
	Segmented and Hierarchical Routing
	Clustered LEs
	Embedded Functional Units

	FPGA vs. ASIC Technology
	Chapter Summary
	Exercises

	Case Study - Debouncing Switches and Detecting Edges
	Debouncing a Switch
	Debouncer State Machine
	Debouncer Timer

	A One-Shot (Also Known as Pulse Generator)
	Exercises

	Case Study: A Soda Machine Controller
	Step 1 - Understand the Complete System Requirements and Organization
	Understanding the Coin Mechanism
	Understanding the Dispense Module
	Understanding the User Interface

	Step 2: Determine a System Architecture
	Step 3 - Design the System Parts
	Design of the Timer Subsystem
	Design of the Keypad Interface Subsystem
	Design of the Central Control Subsystem
	Design of the Accumulator
	Design of the Central Control Subsystem State Machine
	A Complete and Conflict-Free State Graph
	Implementing the State Machine Using SystemVerilog
	Asynchronous Inputs, Adjacent State Encodings, and Glitch-Free Outputs

	Summary
	Exercises

	Case Study: The Design of a UART
	UART Protocol Design
	Designing the UART
	Design of a UART Transmitter
	Host-UART Handshaking
	The Transmitter Datapath
	The Transmitter Control Section
	An Alternate Transmitter Coding Style

	Design of a UART Receiver
	Summary

	Tri-State Drivers and Buses
	SystemVerilog Design for Bus Structures
	Summary

	SystemVerilog vs. Verilog
	SystemVerilog vs. Verilog
	Data types
	The logic Variable Type
	Enumerated Types

	Enhanced always Blocks
	Verilog, SystemVerilog, and VHDL Interoperability
	Moving Forward

	ASCII Table

